Home About us Contact | |||
Rice Gall Midge (rice + gall_midge)
Kinds of Rice Gall Midge Selected AbstractsFemale reproductive biology of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (Hymenoptera: Eulophidae), two parasitoids associated with the African Rice Gall Midge, Orseolia oryzivora (Diptera: Cecidomyiidae)ENTOMOLOGICAL SCIENCE, Issue 2 2008Souleymane NACRO Abstract We investigated the female reproductive system of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (= Tetrastichus pachydiplosisae) (Hymenoptera: Eulophidae), two parasitoids associated with the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae). Both optical and electron microscopy were used. The female reproductive system of P. diplosisae includes two large ovaries of the meristic polytrophic-type, each composed of several tens of ovarioles. The system includes also a venomous gland that extends to a common oviduct. This gland had a filiform secretory portion, in which the epithelium was thin and surrounded a common evacuation canal. The secretory cells secrete into a large reservoir. Parasitism due to P. diplosisae is gregarious. The female reproductive system of A. procerae includes two ovaries of the meristic polytrophic-type, and each ovary has a few ovarioles. Each ovariole includes one or two oocytes, which can be seen in the vitellarium. Two accessory glands, which extend to the oviduct, are also visible. The secretory epithelium of the accessory gland is made up of a dense network of secretory cells surrounded by muscle fibers. Females of A. procerae pierce the tissues of the gall and probably deposit one egg on or close to the pupa of the midge. Aprostocetus procerae is a solitary parasitoid of the midge. The two parasitoids exploit the same host at different developmental stages. These findings improve our knowledge of the reproductive biology of these two parasitoids associated with the African rice gall midge, an important pest in Africa. [source] Inheritance of resistance against biotype 2 of the Asian rice gall midge, Orseolia oryzaeENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2000J. Pani Abstract The inheritance of resistance in the rice cultivars Phalguna, ARC5984, ARC 5158, Veluthacheera, and T1477 to the Asian rice gall midge biotype 2 was studied under both natural and artificial infestation conditions against the susceptible cultivars Jaya and IR20. A single recessive gene in Veluthacheera and two recessive complementary genes in T1477 control resistance. Phalguna and ARC5984 possess a single dominant gene while ARC5158 has a single dominant and a single recessive gene for resistance. Allelism studies showed that genes for resistance in Veluthacheera and T1477 are allelic but non-allelic to the resistance genes in Phalguna and ARC5984, which are allelic to each other. Genes for resistance in ARC5158 are allelic to resistance genes of the other four donors. There was no cytoplasmic inhibition of resistance by the susceptible parents. [source] Female reproductive biology of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (Hymenoptera: Eulophidae), two parasitoids associated with the African Rice Gall Midge, Orseolia oryzivora (Diptera: Cecidomyiidae)ENTOMOLOGICAL SCIENCE, Issue 2 2008Souleymane NACRO Abstract We investigated the female reproductive system of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (= Tetrastichus pachydiplosisae) (Hymenoptera: Eulophidae), two parasitoids associated with the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae). Both optical and electron microscopy were used. The female reproductive system of P. diplosisae includes two large ovaries of the meristic polytrophic-type, each composed of several tens of ovarioles. The system includes also a venomous gland that extends to a common oviduct. This gland had a filiform secretory portion, in which the epithelium was thin and surrounded a common evacuation canal. The secretory cells secrete into a large reservoir. Parasitism due to P. diplosisae is gregarious. The female reproductive system of A. procerae includes two ovaries of the meristic polytrophic-type, and each ovary has a few ovarioles. Each ovariole includes one or two oocytes, which can be seen in the vitellarium. Two accessory glands, which extend to the oviduct, are also visible. The secretory epithelium of the accessory gland is made up of a dense network of secretory cells surrounded by muscle fibers. Females of A. procerae pierce the tissues of the gall and probably deposit one egg on or close to the pupa of the midge. Aprostocetus procerae is a solitary parasitoid of the midge. The two parasitoids exploit the same host at different developmental stages. These findings improve our knowledge of the reproductive biology of these two parasitoids associated with the African rice gall midge, an important pest in Africa. [source] Sex ratio bias in the F1 adult progeny of African rice gall midge, Orseolia oryzivora H. and G. (Dipt., Cecidomyiidae)JOURNAL OF APPLIED ENTOMOLOGY, Issue 6-7 2006A. A. Omoloye Abstract:, Against the background of conflicting reports of variable sex ratio distribution in different populations of the African rice gall midge (AfRGM), Orseolia oryzivora Harris and Gagne, the number and sex ratios of F1 adult progeny produced per female from wild and screen house populations were investigated in the screen house at 27 ± 3°C, 60,70% relative humidity and 12 : 12 h (light : dark) photoperiod. Results indicated the occurrence of a single sex-biased ratio in all the F1 adult progeny produced per female of this pest. Regardless of the source, whether from wild or screen house population, each mated female AfRGM produced a full complement of either sex only but never both. The difference between the number of eggs laid and F1 adult progeny that emerged per female from wild and screen house populations was not significant (P > 0.05), indicating consistency in the occurrence of this phenomenon among AfRGM populations. The reason for this could not be ascertained in this study but AfRGM eggs must be fertilized for development and eclosion to occur. No F2 adults emerged when a cohort of emergents from the same female were allowed to re-infest susceptible seedlings, indicating absence of parthenogenesis. [source] |