Home About us Contact | |||
Reversible Reaction (reversible + reaction)
Selected AbstractsReduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus.DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2006The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective Abstract The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5,-dihydroprogesterone (DHP) by the enzyme 5,-reductase. DHP is subsequently reduced to 3,,5,-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3,-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5,-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3,-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Solid State Electrochemical Oxidation Mechanisms Of Morin in Aqueous MediaELECTROANALYSIS, Issue 9 2005Patricia Janeiro Abstract The mechanism of electrochemical oxidation of morin has been studied using cyclic, differential pulse and square-wave voltammetry techniques in aqueous electrolyte with solid, insoluble morin hydrate mechanically transferred to a glassy carbon electrode surface, over a wide pH range. The oxidation mechanism proceeds in sequential steps, related with the hydroxyl groups in the three aromatic rings and the oxidation is pH dependent over part of the pH range the oxidation potentials are shifted to lower values with increasing pH. Oxidation of the 2,,4,dihydroxy moiety at the B ring of morin occurs first, at very low positive potentials, and is a one electron one proton reversible reaction. The hydroxyl groups oxidized at more positive potentials were shown to undergo an irreversible oxidation reaction. [source] Electrochemical Oxidation of QuercetinELECTROANALYSIS, Issue 22 2003Maria, Oliveira Brett Abstract The mechanism of electrochemical oxidation of quercetin on a glassy carbon electrode has been studied using cyclic, differential pulse and square-wave voltammetry at different pH. It proceeds in a cascade mechanism, related with the two catechol hydroxyl groups and the other three hydroxyl groups which all present electroactivity, and the oxidation is pH dependent. Quercetin also adsorbs strongly on the electrode surface; and the final oxidation product is not electroactive and blocks the electrode surface. The oxidation of the catechol 3,,4,-dihydroxyl electron-donating groups, occurs first, at very low positive potentials, and is a two electron two proton reversible reaction. The hydroxyl group oxidized next was shown to undergo an irreversible oxidation reaction, and this hydroxyl group can form a intermolecular hydrogen bond with the neighboring oxygen. The other two hydroxyl groups also have an electron donating effect and their oxidation is reversible. [source] Intermediates and the folding of proteins L and GPROTEIN SCIENCE, Issue 4 2004Scott Brown Abstract We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted ,-1 and ,-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third ,-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment. [source] Structure of macrophomate synthaseACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2004Toyoyuki Ose Macrophomate synthase (MPS) is an enzyme that catalyzes an extraordinarily complex conversion reaction, including two decarboxylations, two carbon,carbon bond formations and a dehydration, to form the benzoate analogue macrophomate from a 2-pyrone derivative and oxalacetate. Of these reactions, the two carbon,carbon bond formations are especially noteworthy because previous experiments have indicated that they proceed via a Diels,Alder reaction, one of the most widely used reactions in organic synthesis. The structural evidence that MPS catalyzes an intermolecular Diels,Alder reaction has been reported recently [Ose et al. (2003), Nature (London), 422, 185,189]. Interestingly, the tertiary structure as well as the quaternary structure of MPS are similar to those of 2-dehydro-3-deoxygalactarate (DDG) aldolase, a carbon,carbon bond-forming enzyme that catalyzes the reversible reaction of aldol condensation/cleavage. Here, the structure of MPS is described in detail and compared with that of DDG aldolase. Both enzymes have a (,/,)8 -barrel fold and are classified as belonging to the enolase superfamily based on their reaction strategy. The basic principles for carbon,carbon bond formation used by both MPS and DDG aldolase are the same with regard to trapping the enolate substrate and inducing subsequent reaction. The major differences in the active sites between these two enzymes are the recognition mechanisms of the second substrates, 2-pyrone and DDG, respectively. [source] Process intensification using a two-phase system and micromixing for consecutive and reversible reactionsAICHE JOURNAL, Issue 6 2009Yoshihito Okubo Abstract This study aimed to find reaction conditions that improve the yield of target intermediate products, using a two-phase system and a microspace for first-order consecutive and reversible reactions. As a result, the yield of target products with a two-phase system can be surpassed by that of a single-phase system through selecting the organic phase such that the partition coefficient of the raw material to the aqueous phase is large, and that of the target product to the organic phase is also large. In addition, the volume ratio of two phases and the liquid,liquid interfacial area are also important factors for improving the target product yield. In a microspace, the microfluid segments can be designed both arbitrarily and precisely, and thus it is possible to control the interfacial area and mass transfer rates accurately. Utilization of a microspace can play a significant role in intensifying a two-phase system. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Design of reactive distillations for acetic acid esterificationAICHE JOURNAL, Issue 6 2005Yeong-Tarng Tang Abstract The reactive distillation provides an attractive alternative for reaction/separation processes with reversible reactions, especially for etherification and esterification. The discrete nature of chemical species and the complexity of phase equilibria seem to cloud the picture in understanding reactive distillation. The esterifications of acetic acid with five different alcohols, ranging from C1 to C5, are studied. First, qualitative relationships between macroscopic process flowsheet and microscopic phase equilibria are established, and the process flowsheets are classified into type I, II, and III for these five systems. Next, a systematic design procedure is devised to optimize the design, based on the total annual cost (TAC) and dominant design variables are identified for different flowsheets. Once quantitative design is available, process characteristic are analyzed and potential problems in process operation are identified. Finally, the economic potentials of these three different flowsheets are explored and explanations are given. The results clearly indicate that it is possible to systemize the design of reactive distillation by qualitatively generating flowsheet from phase equilibria and by quantitatively completing the process flow diagram from a sequential design procedure. Moreover, some of the flowsheets presented in this work cannot be found elsewhere in the open literature. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source] Structure of d -3-hydroxybutyrate dehydrogenase prepared in the presence of the substrate d -3-hydroxybutyrate and NAD+ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2009Md Mominul Hoque d -3-Hydroxybutyrate dehydrogenase from Alcaligenes faecalis catalyzes the reversible conversion between d -3-hydroxybutyrate and acetoacetate. The enzyme was crystallized in the presence of the substrate d -3-hydroxybutyrate and the cofactor NAD+ at the optimum pH for the catalytic reaction. The structure, which was solved by X-ray crystallography, is isomorphous to that of the complex with the substrate analogue acetate. The product as well as the substrate molecule are accommodated well in the catalytic site. Their binding geometries suggest that the reversible reactions occur by shuttle movements of a hydrogen negative ion from the C3 atom of the substrate to the C4 atom of NAD+ and from the C4 atom of NADH to the C3 atom of the product. The reaction might be further coupled to the withdrawal of a proton from the hydroxyl group of the substrate by the ionized Tyr155 residue. These structural features strongly support the previously proposed reaction mechanism of d -3-hydroxybutyrate dehydrogenase, which was based on the acetate-bound complex structure. [source] |