Retrograde Metamorphism (retrograde + metamorphism)

Distribution by Scientific Domains


Selected Abstracts


Eclogites of the Dabie Region: Retrograde Metamorphism and Fluid Evolution

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2002
GU Lianxing
Abstract, Based upon fluid effects, retrograde metamorphism of eclogites in the Dabie region can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stage is marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and is thought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely to have occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyanite porphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals such as phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such as amphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with lower amphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. The product of this stage is characterized by plentiful hydrous and volatile-bearing phases. The dissemination-type rutile mineralizations in eclogites might have formed by preferential shearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanying vein rutile was precipitated from fluids of this stage after local transport and concentration, and may hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins can be used as an exploration indicator for dissemination-type rutile deposits. [source]


Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism

GEOFLUIDS (ELECTRONIC), Issue 1-2 2010
S. E. INGEBRITSEN
Geofluids (2010) 10, 193,205 Abstract The variation of permeability with depth can be probed indirectly by various means, including hydrologic models that use geothermal data as constraints and the progress of metamorphic reactions driven by fluid flow. Geothermal and metamorphic data combine to indicate that mean permeability (k) of tectonically active continental crust decreases with depth (z) according to log k , ,14,3.2 log z, where k is in m2 and z in km. Other independently derived, crustal-scale k,z relations are generally similar to this power-law curve. Yet there is also substantial evidence for local-to-regional-scale, transient, permeability-generation events that entail permeabilities much higher than these mean k,z relations would suggest. Compilation of such data yields a fit to these elevated, transient values of log k , ,11.5,3.2 log z, suggesting a functional form similar to that of tectonically active crust, but shifted to higher permeability at a given depth. In addition, it seems possible that, in the absence of active prograde metamorphism, permeability in the deeper crust will decay toward values below the mean k,z curves. Several lines of evidence suggest geologically rapid (years to 103 years) decay of high-permeability transients toward background values. Crustal-scale k,z curves may reflect a dynamic competition between permeability creation by processes such as fluid sourcing and rock failure, and permeability destruction by processes such as compaction, hydrothermal alteration, and retrograde metamorphism. [source]


Amphibolite and blueschist,greenschist facies metamorphism, Blue Mountain inlier, eastern Jamaica

GEOLOGICAL JOURNAL, Issue 5 2008
Richard N. Abbott Jr
Abstract Cretaceous (possibly older) metamorphic rock occurs mainly in the Blue Mountain inlier in eastern Jamaica. Fault-bounded blocks reveal two styles of metamorphism, Westphalia Schist (upper amphibolite facies) and Mt. Hibernia Schist (blueschist (BS),greenschist (GS) facies). Both Westphalia Schist and Mt. Hibernia Schist preserve detailed records of retrograde P,T paths. The paths are independent, but consistent with different parts of the type-Sanbagawa metamorphic facies series in Japan. For each path, phase relationships and estimated P,T conditions support a two-stage P,T history involving residence at depth, followed by rapid uplift and cooling. Conditions of residence vary depending on the level in a tectonic block. For the critical mineral reaction (isograd) in Westphalia Schist, conditions were P ,7.5,kbars, T ,600°C (upper amphibolite facies). Retrograde conditions in Hibernia Schist were P,=,2.6,3.0,kbars, T,=,219,237°C for a(H2O),=,0.8,1.0 (GS facies). Mt. Hibernia Schist may represent a volume of rock that was separated and uplifted at an early time from an otherwise protracted P,T path of the sort that produced the Westphalia Schist. Reset K,Ar ages for hornblende and biotite indicate only that retrograde metamorphism of Westphalia Schist took place prior to 76.5,Ma (pre-Campanian). Uplift may have commenced with an Albian,Aptian (,112,Ma) orogenic event. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Ultrahigh-pressure metamorphic records hidden in zircons from amphibolites in Sulu Terrane, eastern China

ISLAND ARC, Issue 3 2003
Fulai Liu
Abstract The amphibolites occur sporadically as thin layers and blocks throughout the Sulu Terrane, eastern China. All analyzed amphibolite from outcrop and drill cores from prepilot drill hole CCSD-PP1 and CCSD-PP2, Chinese Continental Scientific Drilling Project in the Sulu Terrane, are retrograded eclogites overprinted by amphibolite-facies retrograde metamorphism, with characteristic mineral assemblages of amphibole + plagioclase + epidote ± quartz ± biotite ± ilmenite ± titanite. However, coesite and coesite-bearing ultrahigh-pressure (UHP) mineral assemblages are identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from these amphibolites. In general, coesite and other UHP mineral inclusions are preserved in the cores and mantles of zircons, whereas quartz inclusions occur in the rims of the same zircons. The UHP mineral assemblages consist mainly of coesite + garnet + omphacite + rutile, coesite + garnet + omphacite, coesite + garnet + omphacite + phengite + rutile + apatite, coesite + omphacite + rutile and coesite + magnesite. Compositions of analyzed mineral inclusions are very similar to those of matrix minerals from Sulu eclogites. These UHP mineral inclusion assemblages yield temperatures of 631,780°C and pressures of ,2.8 × 103 MPa, representing the P,T conditions of peak metamorphism of these rocks, which are consistent with those (T = 642,726°C; P , 2.8 × 103 MPa) deduced from adjacent eclogites. These data indicate that the amphibolites are the retrogressive products of UHP eclogites. [source]


Amphibolite facies retrograde metamorphism of the Zhujiachong eclogite, SE Dabieshan: 40Ar/39Ar age constraints from argon extraction using UV-laser microprobe, in vacuo crushing and stepwise heating

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2010
H.-N. QIU
Abstract The Zhujiachong eclogite in the south-eastern Dabieshan ultra-high- P terrane has been overprinted during retrograde metamorphism, with the development of garnet-amphibolite mineral assemblages in most rocks in the outcrop. This study is focused on providing age constraints for the retrograde amphibolite facies and greenschist facies mineralogy by 40Ar/39Ar dating. By applying a novel approach of combining three different techniques for extracting argon: laser stepwise heating of single grains and small separates, a spot fusion technique by UV-laser ablation microprobe on polished sections and an in vacuo crushing technique for liberating radiogenic argon from fluid inclusions, it is demonstrated that an internally consistent thermal history can be derived. The 40Ar/39Ar ages indicate that phengite formed before 265 Ma, probably during the ultra-high- P event. Ages associated with amphibolite facies retrograde metamorphism range from 242 to 217 Ma by the analyses of amphibole. Ages of c. 230 Ma were found for the symplectite matrix that formed during retrogression from eclogite pyroxene. Late stage hydrothermal activity leading to the formation of coarse-grained paragonite and fluid inclusions in vein amphibole was dated at c. 200 Ma. These age results agree well with the mineral crystallization sequence observed from thin-sections of the retrograded eclogite: phengite , paragonite and amphibole in matrix , amphibole in the corona. [source]


Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2007
Y.-C. LIU
Abstract Although ultrahigh-pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east-central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high-pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle-derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two-fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition. [source]


SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2006
F. L. LIU
Abstract Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu-Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh-pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark-luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white-luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542,693 °C and 1.8,2.1 GPa. In contrast, the UHP metamorphic domains are grey-luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739,866 °C and >5.5 GPa. The outermost retrograde rims have dark-luminescent CL images, and contain low- P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP-MS trace-element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U-Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823,503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254,239 Ma, the UHP growth domains occurred at 238,230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218,206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55,60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165,175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid-crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P,T conditions are 9,10 km Myr,1 and 6.4 km Myr,1, respectively, and these rapid subduction,exhumation rates may explain the obtained P,T,t path. Such a fast exhumation suggests that Sulu-Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth. [source]


Progress of actinolite-forming reactions in mafic schists during retrograde metamorphism: an example from the Sanbagawa metamorphic belt in central Shikoku, Japan

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2005
A. OKAMOTO
Abstract Hydration reactions are direct evidence of fluid,rock interaction during regional metamorphism. In this study, hydration reactions to produce retrograde actinolite in mafic schists are investigated to evaluate the controlling factors on the reaction progress. Mafic schists in the Sanbagawa belt contain amphibole coexisting with epidote, chlorite, plagioclase and quartz. Amphibole typically shows two types of compositional zoning from core to rim: barroisite , hornblende , actinolite in the high-grade zone, and winchite , actinolite in the low-grade zone. Both types indicate that amphibole grew during the exhumation stage of the metamorphic belt. Microstructures of amphibole zoning and mass-balance relations suggest that: (1) the actinolite-forming reactions proceeded at the expense of the preexisting amphibole; and (2) the breakdown reaction of hornblende consumed more H2O fluid than that of winchite, when one mole of preexisting amphibole was reacted. Reaction progress is indicated by the volume fraction of actinolite to total amphibole, Yact, with the following details: (1) reaction proceeded homogeneously in each mafic layer; (2) the extent of the hornblende breakdown reaction is commonly low (Yact < 0.5), but it increases drastically in the high-grade part of the garnet zone (Yact,>,0.7); and (3) the extent of the winchite breakdown reaction is commonly high (Yact,>,0.7). Many microcracks are observed within hornblende, and the extent of hornblende breakdown reaction is correlated with the size reduction of the hornblende core. Brittle fracturing of hornblende may have enhanced retrograde reaction progress by increasing of influx of H2O and the surface area of hornblende. In contrast to high-grade rocks, the winchite breakdown reaction is well advanced in the low-grade rocks, where reaction progress is not associated with brittle fracturing of winchite. The high extent of the reaction in the low-grade rocks may be due to small size of winchite before the reaction. [source]


Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2001
Y. L. Xiao
Abstract A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well-preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A P,T path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2 -bearing NaCl-rich solutions, whereas it changed into CO2 -dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low-salinity fluids were involved. In situ UV-laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (,18OVSMOW = c. 6.7,) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid,rock interactions. Unusual MORB-like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra-high-pressure (UHP) eclogites in the Dabie-Sulu area. However, the age-corrected initial ,Nd(t) is ,,2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism. [source]


Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2000
Önen
The metamorphic rocks from near Kütahya in north-west Anatolia record different stages in the history of closure of the Neo-Tethyan ,zmir,Ankara,Erzincan ocean. Sub-ophiolite metamorphic rocks within the Tav,anl, zone are a tectonically composite sequence of quartz,mica schists, amphibole schists, amphibolites and garnet amphibolites. They show increasing metamorphic grade towards the base of the ophiolite. A first metamorphic event, typical of sub-ophiolite metamorphic sole rocks, was characterized by high-grade assemblages, and followed by retrograde metamorphism. A second event was marked by a medium-to high-pressure overprint of the first-stage metamorphic assemblages with assemblages indicating a transition between the blueschist and greenschist facies. The chemistry of the sub-ophiolite metamorphic rocks indicates an ocean island basalt origin, and Ar,Ar dating indicates a high temperature metamorphic event at 93±2 Ma. Counter-clockwise P,T,t paths recorded by the sub-ophiolite metamorphic rocks are interpreted to result from intra-oceanic thrusting during the closure of the ,zmir, Ankara,Erzincan ocean, initiating subduction, which formed the high-temperature assemblages. Further subduction then produced the widespread blueschists of the Tav,anl, zone during the Late Cretaceous. Later cold thrusting obducted the ophiolite (with the metamorphic sole welded to its base), ophiolitic melanges and blueschists onto the Anatolide passive margin in the latest Cretaceous. All these events pre-date the final Anatolide,Pontide continent,continent collision. [source]


Petrology and P,T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China craton

JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2000
G. C. Zhao
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high-grade tonalitic,trondhjemitic,granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P,T estimates using TWQ thermobarometry are: 900,950 °C and 8.0,8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700,800 °C and 6.0,7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550,650 °C and 5.3,6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P,T estimates define a clockwise P,T path involving near-isothermal decompression for the Fuping Complex, similar to the P,T path estimated for the metapelitic gneisses. The inferred P,T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P,T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti-clockwise P,T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P,T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma. [source]


Eclogites of the Dabie Region: Retrograde Metamorphism and Fluid Evolution

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2002
GU Lianxing
Abstract, Based upon fluid effects, retrograde metamorphism of eclogites in the Dabie region can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stage is marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and is thought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely to have occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyanite porphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals such as phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such as amphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with lower amphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. The product of this stage is characterized by plentiful hydrous and volatile-bearing phases. The dissemination-type rutile mineralizations in eclogites might have formed by preferential shearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanying vein rutile was precipitated from fluids of this stage after local transport and concentration, and may hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins can be used as an exploration indicator for dissemination-type rutile deposits. [source]


Metamorphism of the Basement of the Qilian Fold Belt in the Minhe-Ledu Area, Qinghai Province, NW China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2002
TSAI Chinglang
Abstract, The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on metabasitic rocks, but not on migmatitic rocks. The basement experienced metamorphism up to temperature 606,778°C and pressure 4.8,6.1 kbar (0.48,0.61 GPa), equivalent to amphibolite-granulite facies. The peak of the metamorphism is marked by a migmatization which occurred at several localities along the studied route 587-535 Ma ago. The basement also recorded a retrograde metamorphism of greenschist facies, during which biotite, garnet, amphibole, and pyroxene were partly altered to chlorite. [source]