Retinal Chromophore (retinal + chromophore)

Distribution by Scientific Domains


Selected Abstracts


Indole ring orientations of Trp189 in the ground and M intermediate states of bacteriorhodopsin as studied by polarized UV resonance Raman spectroscopy,

JOURNAL OF RAMAN SPECTROSCOPY, Issue 1-3 2006
Kazuhiro Asakawa
Abstract Polarized resonance Raman spectroscopy provides a means for orientation analysis of proteins in aligned samples. Previously, we developed a Raman linear intensity difference (RLID) method to determine the orientations of aromatic amino acid side chains in flow-oriented or membrane-bound proteins. In this study, we have applied the RLID method to Trp189 in bacteriorhodopsin (BR), a transmembrane protein that acts as a light-driven proton pump. Among the eight Trp residues in BR, the Raman spectrum of Trp189 has been extracted by subtracting the spectrum of the Trp189 , Phe mutant from that of wild-type BR. By examining the 251.3-nm-exited polarized resonance Raman intensities of two indole ring vibrations of Trp189, the directions of the La and Bb transition moments have been determined with respect the membrane normal in the light-adapted ground state (BR568) and a photo-excited intermediate (M). Comparison of the orientations of the Trp189 indole ring derived from the La and Bb inclination angles has shown that the indole ring slightly but significantly reorients toward the ionone ring of the retinal chromophore in the M intermediate. The reorientation of Trp189 is consistent with the previous observation that helix F, on which Trp189 is located, undergoes an outward tilt and the hydrophobic interaction of Trp189 increases in the M intermediate. The RLID method combined with 251.3 nm excitation and point mutation is useful for detecting even a small reorientation of a targeted Trp residue. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Protein,Protein Interaction of a Pharaonis Halorhodopsin Mutant Forming a Complex with Pharaonis Halobacterial Transducer Protein II Detected by Fourier-Transform Infrared Spectroscopy,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008
Yuji Furutani
Pharaonis halorhodopsin (pHR) functions as a light-driven inward chloride ion pump in Natoronomonas pharaonis, while pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, pSRII), is a light sensor for negative phototaxis. ppR forms a 2:2 complex with its cognate transducer protein (pHtrII) through intramembranous hydrogen bonds: Tyr199ppR,Asn74pHtrII and Thr189ppR,Glu43 pHtrII, Ser62pHtrII. It was reported that a pHR mutant (P240T/F250Y), which possesses the hydrogen-bonding sites, impairs its pumping activity upon complexation with pHtrII. In this study, effect of the complexation with pHtrII on the structural changes upon formation of the K, L1 and L2 intermediates of pHR was investigated by use of Fourier-transform infrared spectroscopy. The vibrational changes of Tyr250pHR and Asn74pHtrII were detected for the L1 and L2 intermediates, supporting that Tyr250pHR forms a hydrogen bond with Asn74pHtrII as similarly to Tyr199ppR. The conformational changes of the retinal chromophore were never affected by complexation with pHtrII, but amide-I vibrations were clearly different in the absence and presence of pHtrII. The molecular environment around Asp156pHR in helix D is also slightly affected. These additional structural changes are probably related to blocking of translocation of a chloride ion from the extracellular to the cytoplasmic side during the photocycle. [source]


Coupling of Protonation Switches During Rhodopsin Activation,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2007
Reiner Vogel
Recent studies of the activation mechanism of rhodopsin involving Fourier-transform infrared spectroscopy and a combination of chromophore modifications and site-directed mutagenesis reveal an allosteric coupling between two protonation switches. In particular, the ring and the 9-methyl group of the all- trans retinal chromophore serve to couple two proton-dependent activation steps: proton uptake by a cytoplasmic network between transmembrane (TM) helices 3 and 6 around the conserved ERY (Glu-Arg-Tyr) motif and disruption of a salt bridge between the retinal protonated Schiff base (PSB) and a protein counterion in the TM core of the receptor. Retinal analogs lacking the ring or 9-methyl group are only partial agonists,the conformational equilibrium between inactive Meta I and active Meta II photoproduct states is shifted to Meta I. An artificial pigment was engineered, in which the ring of retinal was removed and the PSB salt bridge was weakened by fluorination of C14 of the retinal polyene. These modifications abolished allosteric coupling of the proton switches and resulted in a stabilized Meta I state with a deprotonated Schiff base (Meta ISB). This state had a partial Meta II-like conformation due to disruption of the PSB salt bridge, but still lacked the cytoplasmic proton uptake reaction characteristic of the final transition to Meta II. As activation of native rhodopsin is known to involve deprotonation of the retinal Schiff base prior to formation of Meta II, this Meta ISB state may serve as a model for the structural characterization of a key transient species in the activation pathway of a prototypical G protein-coupled receptor. [source]


Sub-5-fs Real-time Spectroscopy of Transition States in Bacteriorhodopsin During Retinal Isomerization,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2007
Takayoshi Kobayashi
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bRS68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding ,-orbital to the anti-bonding ,*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150,1250 and 900,1000 cm,1, respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700,900 fs until the chromophore isomerizes to the cis -C13=C14 conformation. The frequency of the C=C stretching mode was modulated by the torsion mode of the C13=C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C=C bond length with about 0.01 Å accuracy during the torsion motion around the double bond with 1-fs time resolution. [source]


Structure and Photoreaction of Photoactive Yellow Protein, a Structural Prototype of the PAS Domain Superfamily,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2007
Yasushi Imamoto
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The ,/, fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p -coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed. [source]


Covalent Attachment of Bacteriorhodopsin Monolayer to Bromo-terminated Solid Supports: Preparation, Characterization, and Protein Stability

CHEMISTRY - AN ASIAN JOURNAL, Issue 7 2008
Yongdong Jin Dr.
Abstract The interfacing of functional proteins with solid supports and the study of related protein-adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br-terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610,cm,1 in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple-membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br-terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current,voltage (I,V) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein-containing device structures. [source]


Solvent and Protein Effects on the Structure and Dynamics of the Rhodopsin Chromophore

CHEMPHYSCHEM, Issue 9 2005
Ute F. Röhrig Dr.
Abstract The structure and dynamics of the retinal chromophore of rhodopsin are investigated systematically in different environments (vacuum, methanol solution, and protein binding pocket) and with different computational approaches (classical, quantum, and hybrid quantum mechanics/molecular mechanics (QM/MM) descriptions). Finite temperature effects are taken into account by molecular dynamics simulations. The different components that determine the structure and dynamics of the chromophore in the protein are dissected, both in the dark state and in the early photointermediates. In vacuum and in solution the chromophore displays a very high flexibility, which is significantly reduced by the protein environment. In the 11- cis chromophore, the bond-length alternation, which is correlated with the dipole moment, is found to be similar in solution and in the protein, while it differs greatly with respect to minimum-energy vacuum structures. In the model of the earliest protein photointermediate, the highly twisted chromophore shows a very reduced bond-length alternation. [source]