Retention Curves (retention + curve)

Distribution by Scientific Domains

Kinds of Retention Curves

  • water retention curve


  • Selected Abstracts


    A novel reactor for exploring the effect of water content on biofilter degradation rates

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2003
    Milinda A. Ranasinghe
    A novel batch recycle reactor was developed to investigate the effect of water content changes on the biological degradation rate of gas phase contaminants in low water content systems, such as biofilters. The reactor tightly controlled the water content of the unsaturated packing material using the principle of a suction cell. Matric potential in the compost was controlled between ,6 and ,36 cm H2O. A soil water retention curve relating matric potential to gravimetric water content was generated for the compost. Periodic dry weight analyses of reactor samples, together with the water retention curve, verified moisture content control. Runs were performed with toluene as the contaminant using unamended compost at a constant temperature of 30°C. Degradation results indicated a linear, biologically limited degradation region, followed by a non-linear region at lower concentrations. Elimination capacities were calculated for the linear region for different matric potentials along both the wetting and drying curves, and both changes in the water content and direction of approach affected the removal rates in the linear region. The elimination capacity ranged from 155 g/m3 hr to 24 g/m3 hr for toluene over the matric potential range investigated. Repeatability studies indicated that moisture content was most likely the parameter that influenced changes in performance. [source]


    Effect of temperature on water retention phenomena in deformable soils: theoretical and experimental aspects

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2010
    S. Salager
    In this paper, a theoretical and experimental investigation of the effect of temperature on water retention phenomena in deformable soils is presented. A general law expressing the change in suction with water content, temperature and void ratio is proposed theoretically. This law accounts for the influence of density and temperature on water retention. It also provides a general framework which appears to be well-adapted to describe many particular cases. The effect of temperature is studied through a predictive relationship which is established in this framework. This relationship allows us to obtain the water retention curve at any temperature from that at a reference temperature, thus reducing strongly the number of tests required to characterize the thermo-hydraulic behaviour of a soil. The relevance of this relationship was experimentally verified from new tests as well as the results previously reported in the literature. The new tests were performed on two model media, namely, a terracotta ceramic and a clayey-silty sand. The tests taken from the literature concerned two different clays. Comparison between theoretical prediction and experimental data was particularly promising and shows the capability of the model to cover a wide range of soils. [source]


    Using a pore-scale model to quantify the effect of particle re-arrangement on pore structure and hydraulic properties

    HYDROLOGICAL PROCESSES, Issue 8 2007
    Oagile Dikinya
    Abstract A pore-scale model based on measured particle size distributions has been used to quantify the changes in pore space geometry of packed soil columns resulting from a dilution in electrolyte concentration from 500 to 1 mmol l,1 NaCl during leaching. This was applied to examine the effects of particle release and re-deposition on pore structure and hydraulic properties. Two different soils, an agricultural soil and a mining residue, were investigated with respect to the change in hydraulic properties. The mining residue was much more affected by this process with the water saturated hydraulic conductivity decreasing to 0·4% of the initial value and the air-entry value changing from 20 to 50 cm. For agricultural soil, there was little detectable shift in the water retention curve but the saturated hydraulic conductivity decreased to 8·5% of the initial value. This was attributed to localized pore clogging (similar to a surface seal) affecting hydraulic conductivity, but not the microscopically measured pore-size distribution or water retention. We modelled the soil structure at the pore scale to explain the different responses of the two soils to the experimental conditions. The size of the pores was determined as a function of deposited clay particles. The modal pore size of the agricultural soil as indicated by the constant water retention curve was 45 µm and was not affected by the leaching process. In the case of the mining residue, the mode changed from 75 to 45 µm. This reduction of pore size corresponds to an increase of capillary forces that is related to the measured shift of the water retention curve. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2010
    C. Fallico
    Fractal geometry was deployed to analyse water retention curves (WRC). The three models used to estimate the curves were the general pore-solid fractal (PSF) model and two specific cases of the PSF model: the Tyler & Wheatcraft (TW) and the Rieu & Sposito (RS) models. The study was conducted on 30 undisturbed, sandy loam soil samples taken from a field and subjected to laboratory analysis. The fractal dimension, a non-variable scale factor characterizing each water retention model proposed, was estimated by direct scaling. The method for determining the fractal dimension proposed here entails limiting the analysis to the interval between an upper and lower pressure head cut-off on a log-log plot, and defining the dimension itself as the straight regression line that interpolates the points in the interval with the largest coefficient of determination, R2. The scale relative to the cut-off interval used to determine the fractal behaviour in each model used is presented. Furthermore, a second range of pressure head values was analysed to approximate the fractal dimension of the pore surface. The PSF model exhibited greater spatial variation than the TW or RS models for the parameter values typical of a sandy loam soil. An indication of the variability of the fractal dimension across the entire area studied is also provided. [source]


    Changes in shrinkage of restored soil caused by compaction beneath heavy agricultural machinery

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008
    B. Schäffer
    Summary Compaction is a major cause of soil degradation. It affects not only the porosity of the soil, but also the soil's hydrostructural stability. Soil that is restored after temporary removal is particularly sensitive to compaction. We investigated the effects of trafficking with a heavy combine harvester on the shrinkage behaviour of a restored soil that had been gently cultivated for several years. We tested the hypothesis that compaction decreases the hydrostructural stability of restored soil by analysing simultaneously measured shrinkage and water retention curves of undisturbed soil samples. Shrinkage strongly depended on clay and organic carbon content. Taking account of this influence and normalizing the shrinkage parameters with respect to these soil properties, we found pronounced effects of trafficking on shrinkage. Ten passes with the combine harvester decreased the structural porosity by about 40% at maximum swelling and by about 30% at the shrinkage limit and increased the bulk density by 8% at maximum swelling and by 10% at the shrinkage limit, but did not significantly affect the porosity of the soil plasma. Moreover, trafficking modified shrinkage, increasing the slopes of the shrinkage curve in the basic and structural shrinkage domains by about 30% and more than 150% after 10 passes, respectively. Evidently the aggregate structure was strongly destabilized. The results indicate that the hydrostructural stability of the soil was still very sensitive to compaction by trafficking even 5 years after restoration. The analysis of shrinkage seemed well suited for the assessment of compaction effects on soil structure. [source]


    Increasing dietary crude protein does not increase the methionine requirement in kittens,

    JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 11-12 2007
    M. J. Strieker
    Summary The objective of this study was to determine if the methionine (met) requirement of kittens is correlated with the concentration of dietary crude protein (CP). The study used 48 male kittens in two replications of six 4 × 4 Latin squares, each representing one concentration of met (1.5, 2.5, 3.5, 4.5, 6.0 or 9.0 g/kg diet) with four CP concentrations (150, 200, 300 and 500 g/kg diet) in 2-week periods. Cystine was present in the lowest CP diet at 5.3 g/kg diet and increased as dietary CP increased. Body weight gain, food intake, nitrogen balance and plasma amino acids, glucose, insulin, cortisol, somatomedin C, T3 and T4 concentrations on day 12 were measured. From breakpoint analysis of the nitrogen retention curves, the met requirement of kittens was found to be 3.1, 3.8, 3.1 and 2.4 g met/kg for the 150, 200, 300 and 500 g CP/kg diets, respectively. When met was limiting (1.5 or 2.5 g/kg diet), increasing dietary CP did not decrease, but rather increased food intake, body weight gain and nitrogen retention. Plasma met concentrations increased as dietary met increased and at 2.5,3.5 g met/kg diet were not different among kittens fed the various CP diets. Total plasma T3 and T4 increased significantly as dietary CP increased in kittens given the 2.5 and 4.5 g met/kg diets. Results indicate that food intake and possibly altered hormonal secretion play a role in this growth response. In conclusion, the met requirement of growing kittens, unlike omnivores and herbivores studied, was not positively correlated with the concentration of dietary CP. [source]


    Estimating water retention curves of forest soils from soil texture and bulk density

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2003
    Robert Teepe
    Abstract Forest soils differ significantly from the arable land in their distribution of the soil bulk density and humus content, but the water retention parameters are primarily derived from the data of agricultural soils. Thus, there is a need to relate physical parameters of forest soils with their water retention characteristics and compare them with those of agricultural soils. Using 1850 water retention curves from forest soils, we related the following soil physical parameters to soil texture, bulk density, and C content: air capacity (AC), available water capacity (AWC), and the permanent wilting point (PWP). The ACs of forest soils were significantly higher than those of agricultural soils which were related to the low bulk densities of the forest soils, whereas differences in AWCs were small. Therefore, for a proper evaluation of the water retention curves (WRCs) and the parameters derived from them, further subdivisions of the lowest (< 1.45 g cm -3) of the three bulk density classes was undertaken to the wide range of low soil densities in forest soils (giving a total of 5 bulk density classes). In Germany, 31 soil texture classes are used for the estimation of soil physical parameters. Such a detailed classification is not required because of insignificant differences in WRCs for a large number of these classes. Based on cluster analysis of AC, AWC, and PWP parameters, 10 texture collectives were obtained. Using 5 classes of bulk densities, we further calculated the ACs, AWCs, and the PWPs for these 10 classes. Furthermore, "van Genuchten parameters" (, r, , s, ,, and n) were derived which described the average WRC for each designated class. In a second approach using multiple regression analysis, regression functions for AC, AWC, and PWP and for the van Genuchten parameter were calculated. Abschätzung der Wasser-Retentionskurven von Waldböden anhand der Bodenart und Bodendichte Obwohl sich Waldböden in der Verteilung der Bodendichte und Humusgehalte deutlich von Ackerböden unterscheiden, basiert die Ableitung ihrer bodenphysikalischen Kenngrößen in der Kartieranleitung auf Erhebungen landwirtschaftlich genutzter Böden. Die Abschätzung physikalischer Eigenschaften von Waldböden ist daher weiterhin als unzureichend anzusehen. In dieser Arbeit wurde auf Grundlage von 1850 an Waldböden ermittelten Wasser-Retentionskurven die Luftkapazität, die nutzbare Wasserspeicherkapazität und der Wassergehalt am permanenten Welkepunkt aus der Bodenart, der Bodendichte und dem C-Gehalt hergeleitet. Im Vergleich zu Ackerböden lagen die berechneten Luftkapazitäten aufgrund der unterschiedlichen vertikalen Verteilung der Bodendichten und Humusgehalte von Wald- und Ackerböden in Waldböden deutlich höher, Unterschiede in der nutzbaren Wasserspeicherkapazität hingegen waren gering. Die Ergebnisse zeigen, dass für Waldböden eine differenziertere Unterteilung der Dichteklassen notwendig ist, um die große Streuung im Bereich der unteren Bodendichte adäquat zu berücksichtigen. Andererseits basiert in Deutschland die Abschätzung physikalischer Bodeneigenschaften auf einer detaillierten Einteilung von 31 Texturklassen (Kartieranleitung und Forstliche Standortaufnahme). Da die Unterschiede zwischen vielen Texturklassen häufig sehr gering und statistisch nicht zu trennen sind, wurde unser Datensatz mit Hilfe einer Clusteranalyse auf 10 Texturklassen reduziert. Für diese Texturklassen wurden, unterteilt in jeweils 5 Dichteklassen, die Luftkapazitäten, die nutzbaren Wasserspeicherkapazitäten und der permanente Welkepunkt sowie die van Genuchten Parameter , r, , s, ,, und n berechnet. In einem zweiten Ansatz wurde eine Abschätzung dieser Kenngrößen mit Hilfe der multiplen Regression vorgenommen. [source]