Restoration Programs (restoration + program)

Distribution by Scientific Domains


Selected Abstracts


Recovering the Reptile Community after the Mine-Tailing Accident of Aznalcóllar (Southwestern Spain)

RESTORATION ECOLOGY, Issue 5 2009
Rocío Márquez-Ferrando
Abstract Ecosystem restoration requires that habitat requirements of all species be considered. Among animal communities in Mediterranean ecosystems, reptiles, as ectothermic vertebrates, need refuges for avoidance of extreme environmental temperatures, concealment from predators, and oviposition sites. In 1998, a massive amount of tailings broke out of the holding pond of the Aznalcóllar mine (southwestern Spain) and polluted the Guadiamar river valley. After the accident, a soil- and vegetation restoration program began, and the Guadiamar Green Corridor was created to connect two huge natural areas, Doñana National Park and the Sierra Morena. Within this corridor, the reptile community remained dramatically impoverished, probably because of elimination of all natural refuges during the soil restoration program. To test this hypothesis, we set an array of artificial refuges (logs) in a large experimental plot. During the 5 years of the experiment (2002,2006), the area managed with artificial refuges exhibited a better and faster recovery of the reptile community in species richness and individual abundance than did the control area with no artificial refuges. Moreover, reptile colonization of the Guadiamar Green Corridor was transverse rather than lineal,that is, it did not act as a corridor for reptiles, at least in the first stages of colonization. This suggests that landscape restoration programs should not neglect refuge availability, a limiting resource for reptile species. [source]


Vertebrate Fauna Recolonization of Restored Bauxite Mines,Key Findings from Almost 30 Years of Monitoring and Research

RESTORATION ECOLOGY, Issue 2007
Owen G. Nichols
Abstract Studies into the processes of vertebrate fauna colonization of Alcoa's restored bauxite mines began around 1975. This recognized the key role of vertebrate fauna in jarrah forest ecosystem processes, and also the fact that some species were rare, so priority was given to determining their status in unmined forest, and promoting their return to restored areas following mining. Long-term studies have since taken place on mammals, birds, and reptiles both in unmined forest and in restored areas of varying ages and techniques. Mammal recolonization varies between species depending on species' food and shelter requirements and their distribution and abundance in the surrounding forest. Birds rapidly recolonize and 95% of species have been recorded in restoration. Bird community structure changes with restoration type and age, and in current restoration, it is similar to that of unmined forest by the age of 10 years. Studies on reptiles have shown that 21 of 24 species have recolonized. The remaining three include one legless lizard and two snakes, all of which feed on small vertebrates (e.g., skinks) and require shelter in the form of logs, stumps, and coarse woody debris. Some other reptile species consistently occur in restoration in lower densities than in unmined forest, and current studies are investigating the causes of this. Together, studies on these three vertebrate fauna groups have provided valuable, complementary information on their habitat requirements, and the extent to which Alcoa's restoration program has been successful in reestablishing this important component of the jarrah forest's biodiversity. [source]


Forest History as a Basis for Ecosystem Restoration,A Multidisciplinary Case Study in a South Swedish Temperate Landscape

RESTORATION ECOLOGY, Issue 2 2007
Matts Lindbladh
Abstract Basic knowledge of the previous forest types or ecosystem present in an area ought to be an essential part of all landscape restoration. Here, we present a detailed study of forest and land use history over the past 2,000 years, from a large estate in southernmost Sweden, which is currently undergoing a restoration program. In particular, the aim was to identify areas with long continuity of important tree species and open woodland conditions. We employed a multidisciplinary approach using paleoecological analyses (regional and local pollen, plant macrofossil, tree ring) and historical sources (taxation documents, land surveys, forest inventories). The estate has been dominated by temperate broad-leaved trees over most of the studied period. When a forest type of Tilia, Corylus, and Quercus started to decline circa 1,000 years ago, it was largely replaced by Fagus. Even though extensive planting of Picea started in mid-nineteenth century, Fagus and Quercus have remained rather common on the estate up to present time. Both species show continuity on different parts of the estate from eighteenth century up to present time, but in some stands, for the entire 2,000 years. Our suggestions for restoration do not aim for previous "natural" conditions but to maintain the spatial vegetational pattern created by the historical land use. This study gives an example of the spatial and temporal variation of the vegetation that has historically occurred within one area and emphasizes that information from one methodological technique provides only limited information about an area's vegetation history. [source]


Effect of Grazing on Restoration of Endemic Dwarf Pine (Pinus culminicola Andresen et Beaman) Populations in Northeastern Mexico

RESTORATION ECOLOGY, Issue 1 2005
J Jiménez
Abstract A pilot experiment designed to test the effect of cattle, small mammals, and elevation on the success of reforestation of an endemic dwarf pine species in northeastern Mexico was implemented. Pinus culminicola (Andresen et Beaman) grows only in four high peaks in the Sierra Madre Oriental and is under pressure from grazing, wildfires, and human activities such as mining, road development for timber extraction, and telecommunication and aerial navigation devices. We planted and monitored 2-year-old seedlings at three elevations within the natural distribution range of this species at Cerro El Potosí in Nuevo León, Mexico. At each elevation three treatments were established: (1) seedlings protected from cattle plus small mammals, (2) seedlings protected from cattle, and (3) seedlings with free access to cattle and small mammals. Seedling survival was approximately 50% in (1) after 4 years, but there were no surviving seedlings with free access to cattle. Elevation in general did not account for variation in survival. Seedling growth was poor during the 4 years, which implies that seedlings remain susceptible to grazing and trampling by cattle and small mammals. The implications for a large-scale restoration program are discussed. [source]


Habitat-mediated size selection in endangered Atlantic salmon fry: selectional restoration assessment

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 4 2010
Michael M. Bailey
Abstract Preservation of adaptive variation is a top priority of many species restoration programs, but most restoration activities are conducted without direct knowledge of selection that might foster or impair adaptation and restoration goals. In this study, we quantified geographic variation in selection on fry size of endangered Atlantic salmon (Salmo salar) during the 6-week period immediately following stocking in the wild. We also used a model selection approach to assess whether habitat variables influence patterns of such selection. We found evidence for significant size-selection in five out of six selection trials. Interestingly, the strength and pattern of selection varied extensively among sites, and model selection suggested that this variation in phenotypic selection was related to geographic variation in the presence of large woody debris and the slope of the stream gradient. The strong selection differentials we observed should be a concern for endangered salmon restoration, whether they reflect natural processes and an opportunity to maintain adaptation, or an indicator of the potentially deleterious phenotypic consequences of hatchery practices. [source]


Red in tooth and claw: how top predators shape terrestrial ecosystems

JOURNAL OF ANIMAL ECOLOGY, Issue 4 2010
Christopher N. Johnson
Elmhagen, B., Ludwig, G., Rushton, S.P., Helle, P. & Linden, H. (2010) Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. Journal of Animal Ecology79, 785,794. Top predators are increasingly recognized as important regulators of ecosystem structure. Elmhagen et al. in this issue show how a recolonizing population of lynx in Finland is in the process of imposing control of the abundance of a mesopredator, the red fox and relaxing predation pressure on a prey species. Their study shows how ecological restoration programs could use the power of top predators to limit mesopredator populations and control total predation pressure on prey species. [source]


Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2010
Jeffrey J. Opperman
Opperman, Jeffrey J., Ryan Luster, Bruce A. McKenney, Michael Roberts, and Amanda Wrona Meadows, 2010. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale. Journal of the American Water Resources Association (JAWRA) 46(2):211-226. DOI: 10.1111/j.1752-1688.2010.00426.x Abstract:, This paper proposes a conceptual model that captures key attributes of ecologically functional floodplains, encompassing three basic elements: (1) hydrologic connectivity between the river and the floodplain, (2) a variable hydrograph that reflects seasonal precipitation patterns and retains a range of both high and low flow events, and (3) sufficient spatial scale to encompass dynamic processes and for floodplain benefits to accrue to a meaningful level. Although floodplains support high levels of biodiversity and some of the most productive ecosystems on Earth, they are also among the most converted and threatened ecosystems and therefore have recently become the focus of conservation and restoration programs across the United States and globally. These efforts seek to conserve or restore complex, highly variable ecosystems and often must simultaneously address both land and water management. Thus, such efforts must overcome considerable scientific, technical, and socioeconomic challenges. In addition to proposing a scientific conceptual model, this paper also includes three case studies that illustrate methods for addressing these technical and socioeconomic challenges within projects that seek to promote ecologically functional floodplains through river-floodplain reconnection and/or restoration of key components of hydrological variability. [source]


An Introduction to a Special Issue on Large-Scale Submerged Aquatic Vegetation Restoration Research in the Chesapeake Bay: 2003,2008

RESTORATION ECOLOGY, Issue 4 2010
Deborah Shafer
The Chesapeake Bay is one of the world's largest estuaries. Dramatic declines in the abundance and distribution of submerged aquatic vegetation (SAV) in the Chesapeake Bay over the last few decades led to a series of management decisions aimed at protecting and restoring SAV populations throughout the bay. In 2003, the Chesapeake Bay Program established a goal of planting 405 ha of SAV by 2008. Realizing that such an ambitious goal would require the development of large-scale approaches to SAV restoration, a comprehensive research effort was organized, involving federal and state agencies, academia, and the private sector. This effort differs from most other SAV restoration programs due to a strong emphasis on the use of seeds rather than plants as planting stock, a decision based on the relatively low labor requirements of seeding. Much of the research has focused on the development of tools and techniques for using seeds in large-scale SAV restoration. Since this research initiative began, an average of 13.4 ha/year of SAV has been planted in the Chesapeake Bay, compared to an average rate of 3.6 ha/year during the previous 21 years (1983,2003). The costs of conducting these plantings are on a downward trend as the understanding of the limiting factors increases and as new advances are made in applied research and technology development. Although this effort was focused in the Chesapeake Bay region, the tools and techniques developed as part of this research should be widely applicable to SAV restoration efforts in other areas. [source]


The Use of Extant Non-Indigenous Tortoises as a Restoration Tool to Replace Extinct Ecosystem Engineers

RESTORATION ECOLOGY, Issue 1 2010
Christine J. Griffiths
We argue that the introduction of non-native extant tortoises as ecological replacements for extinct giant tortoises is a realistic restoration management scheme, which is easy to implement. We discuss how the recent extinctions of endemic giant Cylindraspis tortoises on the Mascarene Islands have left a legacy of ecosystem dysfunction threatening the remnants of native biota, focusing on the island of Mauritius because this is where most has been inferred about plant,tortoise interactions. There is a pressing need to restore and preserve several Mauritian habitats and plant communities that suffer from ecosystem dysfunction. We discuss ongoing restoration efforts on the Mauritian offshore Round Island, which provide a case study highlighting how tortoise substitutes are being used in an experimental and hypothesis-driven conservation and restoration project. The immediate conservation concern was to prevent the extinction and further degradation of Round Island's threatened flora and fauna. In the long term, the introduction of tortoises to Round Island will lead to valuable management and restoration insights for subsequent larger-scale mainland restoration projects. This case study further highlights the feasibility, versatility and low-risk nature of using tortoises in restoration programs, with particular reference to their introduction to island ecosystems. Overall, the use of extant tortoises as replacements for extinct ones is a good example of how conservation and restoration biology concepts applied at a smaller scale can be microcosms for more grandiose schemes and addresses more immediate conservation priorities than large-scale ecosystem rewilding projects. [source]


Recovering the Reptile Community after the Mine-Tailing Accident of Aznalcóllar (Southwestern Spain)

RESTORATION ECOLOGY, Issue 5 2009
Rocío Márquez-Ferrando
Abstract Ecosystem restoration requires that habitat requirements of all species be considered. Among animal communities in Mediterranean ecosystems, reptiles, as ectothermic vertebrates, need refuges for avoidance of extreme environmental temperatures, concealment from predators, and oviposition sites. In 1998, a massive amount of tailings broke out of the holding pond of the Aznalcóllar mine (southwestern Spain) and polluted the Guadiamar river valley. After the accident, a soil- and vegetation restoration program began, and the Guadiamar Green Corridor was created to connect two huge natural areas, Doñana National Park and the Sierra Morena. Within this corridor, the reptile community remained dramatically impoverished, probably because of elimination of all natural refuges during the soil restoration program. To test this hypothesis, we set an array of artificial refuges (logs) in a large experimental plot. During the 5 years of the experiment (2002,2006), the area managed with artificial refuges exhibited a better and faster recovery of the reptile community in species richness and individual abundance than did the control area with no artificial refuges. Moreover, reptile colonization of the Guadiamar Green Corridor was transverse rather than lineal,that is, it did not act as a corridor for reptiles, at least in the first stages of colonization. This suggests that landscape restoration programs should not neglect refuge availability, a limiting resource for reptile species. [source]


Spontaneous Vegetation on Overburden Piles in the Coal Basin of Santa Catarina, Brazil

RESTORATION ECOLOGY, Issue 3 2008
Robson Dos Santos
Abstract The objective of this work was to select indigenous vegetal species for restoration programs aiming at the regeneration of ombrophilous dense forest. Thirty-five spoil piles located in the county of Sideropolis, Santa Catarina, that received overburden disposal for 39 years (1950,1989) were selected for study because they exhibited remarkable spontaneous regrowth of trees compared to surrounding spoil piles. Floristic inventory covered the whole area of the 35 piles, whereas survey on phytosociology and natural regeneration studies were conducted in 70 plots distributed along the 35 piles. Floristic inventory recorded 83 species from 28 botanical families. Herbaceous terricolous plants constituted the predominant species (47.0%), followed by shrubs (26.5%), trees (19.3%), and vines (7.2%). Results from surveys on phytosociology and natural regeneration, focused on shrubs and trees, recorded incipient ecological succession. In addition, the most adapted species recorded on the overburden piles, as ranked by index of natural regeneration (RNT) plus importance value index (IVI), were as follows: Clethra scabra (RNT = 23.93%; IVI = 17.28%), Myrsine coriacea (RNT = 20.93%, IVI = 11.26%), Eupatorium intermedium (RNT = 7.56%, IVI = 0.40%), Miconia ligustroides (RNT = 5.84%, IVI = 2.37%), Ossaea amygdaloides (RNT = 3.84%, IVI = 1.30%), Tibouchina sellowiana (RNT = 3.29%, IVI = 1.94%), Eup. inulaefolium (RNT = 2.65%, IVI = 0.80%), and Baccharis dracunculifolia (RNT = 2.28%; IVI = 0.56%). High values of IVI and RNT exhibited by the exotic species Eucalyptus saligna (IVI = 21.73%, RNT = 51.41%) indicated strong competition between exotic and indigenous species. Severe chemical (acidic pH and lack of nutrients) and physical (coarse substrate and slope angle of 40,50°) characteristics displayed by the overburden piles constituted limitations to floristic diversity and size of indigenous trees, indicating the need for substrate reclamation prior to forest restoration. [source]


Science Driven Restoration: A Candle in a Demon Haunted World,Response to Cabin (2007)

RESTORATION ECOLOGY, Issue 2 2007
Christian P. Giardina
Abstract Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to restoration practice because an "ivory tower" mentality limits the utility of experiments and diverts research dollars away from answering practical questions. His conclusion is that a nonscientific gardening approach may be more effective at restoring degraded ecosystems. We disagree with this perspective because: (1) restoration science has moved beyond exclusively using "square grids" placed on small patches of land to examine treatment effects on species representation; (2) Cabin's critique greatly undervalues the contribution of science to restoration practice even where the input of restoration scientists is not directly evident; and (3) the practice of restoration is unlikely to advance beyond small-scale and truly haphazard successes without well-designed studies that can provide peer-reviewed and widely accessible published information on the mechanisms underlying both successes and failures. We conclude that through integration with other disciplines, restoration science increasingly will provide novel approaches and tools needed to restore ecosystem composition, structure, and function at stand to landscape scales. As with the broader role of science in the human enterprise (Sagan 1996), the contribution of restoration science to restoration practice can only grow as the discipline matures. [source]


Recommendations for Integrating Restoration Ecology and Conservation Biology in Ponderosa Pine Forests of the Southwestern United States

RESTORATION ECOLOGY, Issue 1 2006
Reed F. Noss
Abstract Over the past century, ponderosa pine,dominated landscapes of the southwestern United States have been altered by human activities such as grazing, timber harvest, road building, and fire exclusion. Most forested areas within these landscapes now show increased susceptibility to stand-replacing fires, insect outbreaks, and drought-related mortality. Recent large wildfires in the region have spurred public interest in large-scale fuel reduction and restoration programs, which create perceived and real conflicts with the conservation of biodiversity. Conservation concerns include the potential for larger road networks, soil and understory disturbance, exotic plant invasion, and the removal of large trees in treated areas. Pursuing prescribed burning, thinning, or other treatments on the broad scale that many scientists and managers envision requires the reconciliation of ecological restoration with biodiversity conservation. This study presents recommendations from a workshop for integrating the principles and practices of restoration ecology and conservation biology, toward the objective of restoring the composition, structure, and function of dry ponderosa pine forests. Planning on the scale of hundreds of thousands of hectares offers opportunities to achieve multiple objectives (e.g., rare species protection and restoration of ecological structures and processes) that cannot easily be addressed on a site-by-site basis. However, restoration must be coordinated with conservation planning to achieve mutual objectives and should include strict guidelines for protection of rare, declining, and sensitive habitats and species. [source]


Vegetation succession in basalt quarries: Pattern on a landscape scale

APPLIED VEGETATION SCIENCE, Issue 2 2003
Jan Novák
Abstract. A spatio-temporal variation of vegetation during spontaneous succession was studied in 56 basalt quarries spread over 1800 km2 in the ,eské st,edoho,í Hills (NW Czech Republic, Central Europe). Differences in the particular habitats inside a quarry, i.e. steep rocky slopes, bottoms and levels; dumps; and screes were considered. The habitats ranged in age from 1 to 78 yr since abandonment. Macroclimate (mean annual temperature and precipitation) significantly influenced the course of succession, which led to a formation of shrubby grassland, shrubby woodland or tall woodland. Participation of target species typical of steppe-like communities significantly depended on the occurrence of the communities in the vicinity, up to a distance of 30 m from a quarry. Disused quarries may become refugia for rare plant species. Spontaneous successional processes led in the reasonable time of ca. 20 yr to semi-natural vegetation. Thus, they can be successfully exploited in restoration programs scheduled for the disused quarries. [source]


The role of spontaneous vegetation succession in ecosystem restoration: A perspective

APPLIED VEGETATION SCIENCE, Issue 1 2001
Karel Prach
Abstract. The paper summarizes ideas which were discussed during the ,Spontaneous Succession in Ecosystem Restoration' conference and elaborated through further discussion among the authors. It seeks to promote the integration of scientific knowledge on spontaneous vegetation succession into restoration programs. A scheme illustrating how knowledge of spontaneous succession may be applied to restoration is presented, and perspectives and possible future research on using spontaneous vegetation succession in ecosystem restoration are proposed. It is concluded that when implementing spontaneous succession for ecological restoration the following points must be considered: setting clear aims; evaluation of environmental site conditions; deciding whether spontaneous succession is an appropriate way to achieve the aims; prediction of successional development; monitoring of the results. The need for interdisciplinary approaches and communication between scientists, engineers and decision-makers is emphasized. [source]