Home About us Contact | |||
Restoration Practice (restoration + practice)
Selected AbstractsIncreasing the Effectiveness of Reed canary grass (Phalaris arundinacea L.) Control in Wet Meadow RestorationsRESTORATION ECOLOGY, Issue 3 2006Carrie Reinhardt Adams Abstract Restoration practices are often based on trial and error or anecdotal information because data from controlled experiments are not available. In wet meadow restorations of the upper Midwest United States, Reed canary grass (Phalaris arundinacea L.) is controlled with spring burning and spring glyphosate herbicide applications, but the relative effectiveness of either treatment with respect to P. arundinacea growth and life history has not been assessed. We designed a multiyear field experiment to evaluate effects of burning and herbicide application timings on P. arundinacea populations. Burning did not reduce P. arundinacea biomass but reduced the P. arundinacea seed bank, potentially limiting recolonization of P. arundinacea. Glyphosate applications in late August and late September were more effective than in mid-May (due to enhanced glyphosate translocation to rhizomes), such that two mid-May applications reduced P. arundinacea biomass to a level equivalent to that achieved by one late-season application. Phalaris. arundinacea recolonized rapidly from the seed bank and, in plots that received suboptimally timed (mid-May) herbicide, from rhizomes. Establishment of native species was very low, likely due to competition with recolonizing P. arundinacea. Unplanted species (from the seed bank and refugial populations) accounted for the majority of non- P. arundinacea biomass. Recolonization of other species was strongly limited by a threshold level of P. arundinacea biomass. Adequate site preparation (over multiple growing seasons) and aftercare (selective removal of P. arundinacea) will be the key to facilitating subsequent wet meadow vegetation establishment. This research provides an example of the importance of experimental evidence as the basis to improve the efficiency of restoration practices. [source] Australia's place in the global restoration challenge: Interview with Richard HobbsECOLOGICAL MANAGEMENT & RESTORATION, Issue 3 2007Richard Hobbs Summary This interview with Professor Richard Hobbs, a prominent Australian researcher, professor and journal editor, traces his involvement in ecology and the relatively new disciplines of landscape ecology and restoration ecology. Born and educated as a plant ecologist in Scotland, Richard undertook postdoctoral research in the USA before taking up a series of research positions in Australia that steered him towards landscape ecology and restoration ecology. Having maintained an interest and involvement in international organizations, Richard provides comment in this interview on the progress of ecological restoration practice in Australasia compared to North America and comments on the need for ensuring research in these disciplines is strongly linked to management, is as broadly relevant as possible, and, is carried out at appropriate scales. [source] Repairing wetlands of the Lower Murray: Learning from restoration practiceECOLOGICAL MANAGEMENT & RESTORATION, Issue 1 2002Anne Jensen First page of article [source] The ecology of restoration: historical links, emerging issues and unexplored realmsECOLOGY LETTERS, Issue 6 2005T. P. Young Abstract Restoration ecology is a young academic field, but one with enough history to judge it against past and current expectations of the science's potential. The practice of ecological restoration has been identified as providing ideal experimental settings for tests of ecological theory; restoration was to be the ,acid test' of our ecological understanding. Over the past decade, restoration science has gained a strong academic foothold, addressing problems faced by restoration practitioners, bringing new focus to existing ecological theory and fostering a handful of novel ecological ideas. In particular, recent advances in plant community ecology have been strongly linked with issues in ecological restoration. Evolving models of succession, assembly and state-transition are at the heart of both community ecology and ecological restoration. Recent research on seed and recruitment limitation, soil processes, and diversity,function relationships also share strong links to restoration. Further opportunities may lie ahead in the ecology of plant ontogeny, and on the effects of contingency, such as year effects and priority effects. Ecology may inform current restoration practice, but there is considerable room for greater integration between academic scientists and restoration practitioners. [source] A Striking Profile: Soil Ecological Knowledge in Restoration Management and ScienceRESTORATION ECOLOGY, Issue 4 2008Mac A. Callaham Jr. Abstract Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this literature, we observed an absence of in-depth discussion of how soils, and in particular the ecology of soils, can be integrated into the developing theory of restoration science. These observations prompted us to assess the current role of soil ecological knowledge in restoration research and restoration practice. Although soils are universally regarded as critical to restoration success, and much research has included manipulations of soil variables, we found that better integration of soil ecological principles could still contribute much to the practice of ecosystem restoration. Here we offer four potential points of departure for increased dialog between restoration ecologists and soil ecologists. We hope to encourage the view that soil is a complex, heterogeneous, and vital entity and that adoption of this point of view can positively affect restoration efforts worldwide. [source] Science Driven Restoration: A Candle in a Demon Haunted World,Response to Cabin (2007)RESTORATION ECOLOGY, Issue 2 2007Christian P. Giardina Abstract Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to restoration practice because an "ivory tower" mentality limits the utility of experiments and diverts research dollars away from answering practical questions. His conclusion is that a nonscientific gardening approach may be more effective at restoring degraded ecosystems. We disagree with this perspective because: (1) restoration science has moved beyond exclusively using "square grids" placed on small patches of land to examine treatment effects on species representation; (2) Cabin's critique greatly undervalues the contribution of science to restoration practice even where the input of restoration scientists is not directly evident; and (3) the practice of restoration is unlikely to advance beyond small-scale and truly haphazard successes without well-designed studies that can provide peer-reviewed and widely accessible published information on the mechanisms underlying both successes and failures. We conclude that through integration with other disciplines, restoration science increasingly will provide novel approaches and tools needed to restore ecosystem composition, structure, and function at stand to landscape scales. As with the broader role of science in the human enterprise (Sagan 1996), the contribution of restoration science to restoration practice can only grow as the discipline matures. [source] Ecological Restoration and Global Climate ChangeRESTORATION ECOLOGY, Issue 2 2006James A. Harris Abstract There is an increasing consensus that global climate change occurs and that potential changes in climate are likely to have important regional consequences for biota and ecosystems. Ecological restoration, including (re)afforestation and rehabilitation of degraded land, is included in the array of potential human responses to climate change. However, the implications of climate change for the broader practice of ecological restoration must be considered. In particular, the usefulness of historical ecosystem conditions as targets and references must be set against the likelihood that restoring these historic ecosystems is unlikely to be easy, or even possible, in the changed biophysical conditions of the future. We suggest that more consideration and debate needs to be directed at the implications of climate change for restoration practice. [source] Plant colonization windows in a mesic old field successionAPPLIED VEGETATION SCIENCE, Issue 2 2003Sándor Bartha Abstract. Closed canopy vegetation often prevents the colonization of plant species. Therefore the majority of plant species are expected to appear at the initial phase of post-agricultural succession in mesic forest environment with moderate levels of resources. This hypothesis was tested with data from the Buell-Small Successional Study, NJ, USA, one of the longest continuous fine-scale studies of old-field succession. The study started in 1958, including old fields with different agricultural histories, landscape contexts, and times of abandonment. In each year of the study, the cover values of plant species were recorded in 48 permanent plots of 1 m2 in each field. We analysed the temporal patterns of colonization at plot scale and related these to precipitation data and other community characteristics. The number of colonizing species decreased significantly after ca. 5 yr, coinciding with the development of a continuous canopy of perennial species. However, species turnover remained high throughout the whole successional sequence. The most remarkable phenomenon is the high inter-annual variation of all studied characteristics. We found considerable temporal collapses of vegetation cover that were synchronized among fields despite their different developmental stages and distinctive species compositions. Declines of total cover were correlated with drought events. These events were associated with peaks of local species extinctions and were followed by increased colonization rates. The transitions of major successional stages were often connected to these events. We suggest that plant colonization windows opened by extreme weather events during succession offer optimum periods for intervention in restoration practice. [source] Hydrogen Peroxide and Wound Healing: A Theoretical and Practical Review for Hair Transplant SurgeonsDERMATOLOGIC SURGERY, Issue 6 2008SARA WASSERBAUER MD BACKGROUND In most hair restoration practices, hydrogen peroxide has been routinely used to remove blood during and after hair transplant surgery. In other specialties, hydrogen peroxide is also used in these ways: wound cleaning, prevention of infection, hemostasis, and removal of debris. Despite its widespread use, there are still concerns and controversy about the potential toxic effect of hydrogen peroxide. OBJECTIVE The objective was to review all available literature including in vivo and in vitro effects of hydrogen peroxide, as well as general wound healing research. MATERIAL AND METHODS Literature up to and including the past three decades was investigated. RESULTS Two pilot studies were found, and there are not enough data examining the real impact of using hydrogen peroxide in hair transplant surgery. In other specialties, H2O2 appears to have positive effects, such as stimulation of vascular endothelial growth factor, induction of fibroblast proliferation, and collagen, or negative effects, such as cytotoxicity, inhibition of keratinocyte migration, disruption of scarless fetal wound repair, and apoptosis. CONCLUSIONS There are not enough data in hair restoration surgery about the use of hydrogen peroxide, and it is unknown and unclear what the optimum dilution should be. Positive and negative effects were found in other specialties. Further studies are recommended. [source] The Art of Repair in Surgical Hair Restoration Part I: Basic Repair StrategiesDERMATOLOGIC SURGERY, Issue 9 2002Robert M. Bernstein MD background. An increasingly important part of many hair restoration practices is the correction of hair transplants that were performed using older, outdated methods, or the correction of hair transplants that have left disfiguring results. The skill and judgment involved in these repair procedures often exceed those needed to operate on patients who have had no prior surgery. The use of small grafts alone does not protect the patient from poor work. Errors in surgical and aesthetic judgment, performing procedures on noncandidate patients, and the failure to communicate successfully with patients about realistic expectations remain major problems. objective. This two-part series presents new insights into repair strategies and expands upon several techniques previously described in the hair restoration literature. The focus is on creative aesthetic solutions to solve the supply/demand limitations inherent in most repairs. This article is written to serve as a guide for surgeons who perform repairs in their daily practices. methods. The repairs are performed by excision with reimplantation and/or by camouflage. Follicular unit transplantation is used for the restorative aspects of the procedure. results. Using punch or linear excision techniques allows the surgeon to relocate poorly planted grafts to areas that are more appropriate. In special situations, removal of grafts without reimplantation can be accomplished using lasers or electrolysis. The key elements of camouflage include creating a deep zone of follicular units, angling grafts in their natural direction, and using forward and side weighting of grafts to increase the appearance of fullness. The available donor supply is limited by hair density, scalp laxity, and scar placement. conclusion. Presented with significant cosmetic problems and severely limited donor reserves, the surgeon performing restorative hair transplantation work faces distinct challenges. Meticulous surgical techniques and optimal utilization of a limited hair supply will enable the surgeon to achieve the best possible cosmetic results for patients requiring repairs. [source] Wildfire effects on soil erodibility of woodlands in NW SpainLAND DEGRADATION AND DEVELOPMENT, Issue 2 2010M. E. Varela Abstract Knowledge of soil erodibility following wildfire is of crucial importance for prioritisation of post-fire restoration practices for soil erosion mitigation. The present work therefore aims to determine the effect of wildfire on soil erodibility for common woodlands in Galicia, NW Spain. This is done by comparing selected topsoil properties of 28 pairs of recently wildfire-burned and neighbouring unburned sites on different geologic substrates. The soil properties were selected for their supposed importance in erodibility, and include aggregate size distribution and water aggregate stability. Comparison of the burned and unburned sites suggested that wildfire had a noticeable negative effect on aggregate size distribution but not on particle size distribution. The effect on aggregate stability was highly variable. Aggregate stability was clearly lower at the burned than unburned site in about a third of the cases and in the remaining cases either basically the same at both sites or higher at the unburned site. The differences in aggregate stability, like those in aggregate size distribution, appear to be associated with changes in organic carbon content. The impact of wildfire on soil erodibility is supposed to operate through its effect on soil organic matter and, thus, to depend strongly on fire severity. Soil erodibility is then little affected by low-severity wildfires but markedly diminished following high-severity wildfires. All burned topsoils were strongly to very strongly water repellent. Fire-enhaced repellency is therefore viewed as a key factor in the post-fire runoff and erosion processes repeatedly observed in recently burned areas in NW Spain. Copyright © 2009 John Wiley & Sons, Ltd. [source] How Much Ecology Do We Need to Know to Restore Mediterranean Ecosystems?RESTORATION ECOLOGY, Issue 3 2007Fernando Valladares Abstract Despite important advances in ecological knowledge of Mediterranean-type ecosystems, advances in restoration ecology have not seen a parallel increase in these systems. Although some concepts such as positive plant,plant interaction (facilitation) have received attention in the restoration ecology community, others such as phenotypic plasticity have not. Some concepts (e.g., environmental heterogeneity) are mature enough for a wide use in restoration, whereas available knowledge on others (e.g., facilitation, plasticity) is less conclusive. However, the scientific knowledge is in general enough to significantly improve the guidelines for restoration of Mediterranean ecosystems. Our review suggests that (1) the extent of facilitation in dry ecosystems is partially understood, with supporting, but somewhat contradictory empirical evidence for its potential use in restoration; (2) the influence of habitat heterogeneity on plant performance and plasticity is only beginning to be understood, with a strong bias toward patterns of structural heterogeneity and negligible information on functional heterogeneity; and (3) sound evaluations of phenotypic plasticity might be useful to increase the success of restoration practices in patchy Mediterranean environments. Future global change scenarios involving temperature rise, reduced precipitation, increased frequency of extreme climatic events, and important land use changes and fragmentation must be particularly considered when restoring Mediterranean ecosystems. Further research on how to incorporate results on facilitation, environmental heterogeneity, and plasticity within a global change framework is clearly needed. [source] Increasing the Effectiveness of Reed canary grass (Phalaris arundinacea L.) Control in Wet Meadow RestorationsRESTORATION ECOLOGY, Issue 3 2006Carrie Reinhardt Adams Abstract Restoration practices are often based on trial and error or anecdotal information because data from controlled experiments are not available. In wet meadow restorations of the upper Midwest United States, Reed canary grass (Phalaris arundinacea L.) is controlled with spring burning and spring glyphosate herbicide applications, but the relative effectiveness of either treatment with respect to P. arundinacea growth and life history has not been assessed. We designed a multiyear field experiment to evaluate effects of burning and herbicide application timings on P. arundinacea populations. Burning did not reduce P. arundinacea biomass but reduced the P. arundinacea seed bank, potentially limiting recolonization of P. arundinacea. Glyphosate applications in late August and late September were more effective than in mid-May (due to enhanced glyphosate translocation to rhizomes), such that two mid-May applications reduced P. arundinacea biomass to a level equivalent to that achieved by one late-season application. Phalaris. arundinacea recolonized rapidly from the seed bank and, in plots that received suboptimally timed (mid-May) herbicide, from rhizomes. Establishment of native species was very low, likely due to competition with recolonizing P. arundinacea. Unplanted species (from the seed bank and refugial populations) accounted for the majority of non- P. arundinacea biomass. Recolonization of other species was strongly limited by a threshold level of P. arundinacea biomass. Adequate site preparation (over multiple growing seasons) and aftercare (selective removal of P. arundinacea) will be the key to facilitating subsequent wet meadow vegetation establishment. This research provides an example of the importance of experimental evidence as the basis to improve the efficiency of restoration practices. [source] Visions of Nature and Environmental Sustainability: Shellfish Harvesting in the Dutch Wadden SeaRESTORATION ECOLOGY, Issue 1 2005J. A. A Swart Abstract The concept of sustainability has several, sometimes contrasting, meanings that may generate confusion, misunderstanding, and conflict concerning conservation and restoration practices. It is therefore desirable to clarify the concept of sustainability, thereby potentially contributing to mutual understanding, especially when social conflicts arise. This article discusses a recently published typology of three conceptions of sustainability that range from economic to ecocentric valuations of nature. We argue that the typology is incomplete because it does not include the arcadian approaches. For this reason, we introduce a "tripolar model" for conceptions of sustainability, applying it to the debate on shellfish harvesting in the Dutch Wadden Sea. We conclude that the particular visions or conceptions of sustainability held by relevant actors may have an impact on strategies for conservation. [source] |