Home About us Contact | |||
Restoration Efforts (restoration + effort)
Selected AbstractsUSING MARYLAND'S STREAM CORRIDOR ASSESSMENT SURVEY TO PRIORITIZE WATERSHED RESTORATION EFFORTS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2002Kenneth T. Yetman ABSTRACT: The Stream Corridor Assessment survey has been developed by the Maryland Department of Natural Resources as a watershed management tool to identify environmental problems and to help prioritize restoration opportunities on a watershed basis. Potential environmental problems commonly identified during the survey include: stream channel alterations, excessive bank erosion, exposed pipes, inadequate stream buffers, fish migration blockages, trash dumping sites, near stream construction, pipe outfalls, and unusual conditions. In addition, the survey records information on the location of potential wetlands creation sites and collects data on the general condition of instream and riparian habitats. Over the past several years, in collaboration with the Maryland Conservation Corps, watershed associations, and local governments, more than 3,293 km (2,046 miles) of Maryland streams have been surveyed. Overall, the survey has proven to be a cost effective starting point for many watershed restoration efforts. [source] Concurrent Management of an Exotic Species and Initial Restoration Efforts in ForestsRESTORATION ECOLOGY, Issue 4 2005Stephen D. Murphy Abstract One of the proximate results of forest fragmentation, and a cause of continued microenvironmental change and exacerbation of ecological problems, is increased invasions by weedy plant species. One such example is Alliaria petiolata (Brassicaceae), a serious pest threatening much of eastern North America. Alliaria petiolata impedes mitigation of fragmentation and restoration efforts because it tends to outcompete and possibly extirpate much of the native understory species on localized scales. As part of a strategy to address the problems of fragmented habitats, an experiment was conducted to determine whether Sanguinaria canadensis (Papaveraceae) could outcompete A. petiolata. Using an additive design, I transplanted S. canadensis at densities of 0, 1, 2, 3, 5, 7, 9, 11, 15, and 20 ramets/m2 in 1997 and allowed them to interact with initial A. petiolata densities of 128 seedlings and 31 rosettes/m2. As of 2000, multivariate analyses of variance with repeated measures and simple analyses of variance indicated that initial S. canadensis densities of as little as 5 ramets/m2 suppressed A. petiolata. Initial S. canadensis densities of 9 and 11 ramets/m2 resulted in the lowest numbers of late-spring seedlings, numbers and sizes of year 1 and 2 rosettes, numbers and gross areas of stem leaves, numbers of flowering individuals, number of flowers, number of fruits (siliques), and height at flowering. While it remains to be tested whether this will continue and if the reestablishment of S. canadensis will help reassemble forest ecosystems, the experiments indicated that transplanting S. canadensis was effective at mitigating the spread of A. petiolata. [source] Restoration effort, habitat mosaics, and macroinvertebrates , does channel form determine community composition?AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009Sonja C. Jähnig Abstract 1.In certain lower mountainous regions of Germany multiple-channel streams constitute the reference condition for stream restoration and conservation efforts. An increasing number of restoration projects re-establish such stream sections, but their impact on macroinvertebrate communities remains vague and needs further elaboration. 2.Seven pairs of single- and multiple-channel sections of mountain rivers were compared in terms of hydromorphology and macroinvertebrate communities. The stream sections were characterized by 16 hydromorphological metrics at various scales, e.g. shore length, channel feature or substrate diversity, flow variability and substrate coverage. Macroinvertebrate data were obtained from 140 substrate-specific samples, which were combined to form representative communities for each section. Community data were subject to similarity and cluster analyses. Thirty-five metrics were calculated with the taxa lists, including number of taxa, abundance, feeding type, habitat and current preferences. 3.Bray,Curtis similarity was very high (69,77%) between communities of single- and multiple-channel sections. Biological metrics were correlated with hydromorphological parameters. Mean Spearman rank r was 0.59 (absolute values). The biological metrics percentage of the community preferring submerged vegetation, being grazers and scrapers or active filter feeders, percentage of epipotamal preference and the percentage of current preference (rheo- to limnophil and rheobiont) were significantly correlated with hydromorphological parameters. 4.Differences between stream sections can be attributed to single taxa occurring only in either the single- or multiple-channel sections. These exclusive taxa were mainly found on organic substrates such as living parts of terrestrial plants, large wood, coarse particulate organic matter (CPOM) and mud. Reasons for high similarity of macroinvertebrate communities from single- or multiple-channel sections are discussed, including the influence of large-scale catchment pressures, length of restored sections and lack of potential re-colonizers. Copyright © 2008 John Wiley & Sons, Ltd. [source] Reestablishment of the Southern California Rocky Intertidal Brown Alga, Silvetia compressa: An Experimental Investigation of Techniques and Abiotic and Biotic Factors That Affect Restoration SuccessRESTORATION ECOLOGY, Issue 2010Stephen G. Whitaker Previous research has indicated that many rocky intertidal macrophyte communities in southern California, and other locations around the world, have shifted from larger, highly productive, fleshy seaweeds toward a smaller, less productive, disturbance-tolerant flora. In widespread decline are ecologically important, canopy-forming, brown seaweeds, such as the southern California rockweed species Silvetia compressa. Restoration efforts are common for depleted biogenic species in other habitats, but restoration within rocky intertidal zones, particularly on wave-exposed coasts, has been largely unexplored. In two phases, we attempted to restore Silvetia populations on a southern California shore by transplanting live plants and experimentally investigating factors that affect their survival. In Phase I, we implemented a three-way factorial design where juvenile Silvetia thalli were transplanted at four sites with a combination of simulated canopy and herbivore exclusion treatments. Transplant survival was low, although enhanced by the presence of a canopy; site and herbivore presence did not affect survival. In Phase II, we used a two-way factorial design, transplanting two size classes of rockweeds (juveniles and reproductive adults) on horizontal and partially shaded, north-facing vertical surfaces at a target location where this rockweed has been missing since at least the 1970s. Transplant survival was moderate but lower than natural survival rates. Larger thalli exhibited significantly higher survival rates than smaller thalli in both the transplanted and naturally occurring populations, particularly on vertical surfaces. Higher mortality on horizontal surfaces may have been due to differences in desiccation stress and human trampling. Transplanting reproductive adults resulted in the subsequent recruitment of new individuals. [source] Stretch Goals and Backcasting: Approaches for Overcoming Barriers to Large-Scale Ecological RestorationRESTORATION ECOLOGY, Issue 4 2006Adrian D. Manning Abstract The destruction and transformation of ecosystems by humans threatens biodiversity, ecosystem function, and vital ecosystem services. Ecological repair of ecosystems will be a major challenge over the next century and beyond. Restoration efforts to date have frequently been ad hoc, and site or situation specific. Although such small-scale efforts are vitally important, without large-scale visions and coordination, it is unlikely that large functioning ecosystems will ever be constructed by chance through the cumulative effects of small-scale projects. Although the problems of human-induced environmental degradation and the need for a solution are widely recognized, these issues have rarely been addressed on a sufficiently large-scale basis. There are numerous barriers that prevent large-scale ecological restoration projects from being proposed, initiated, or carried through. Common barriers include the "shifting baseline syndrome," the scale and complexity of restoration, the long-term and open-ended nature of restoration, funding challenges, and preemptive constraint of vision. Two potentially useful approaches that could help overcome these barriers are stretch goals and backcasting. Stretch goals are ambitious long-term goals used to inspire creativity and innovation to achieve outcomes that currently seem impossible. Backcasting is a technique where a desired end point is visualized, and then a pathway to that end point is worked out retrospectively. A case study from the Scottish Highlands is used to illustrate how stretch goals and backcasting could facilitate large-scale restoration. The combination of these approaches offers ways to evaluate and shape options for the future of ecosystems, rather than accepting that future ecosystems are victims of past and present political realities. [source] Monitoring Regional Riparian Forest Cover Change Using Stratified Sampling and Multiresolution Imagery,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2010Peter R. Claggett Claggett, Peter R., Judy A. Okay, and Stephen V. Stehman, 2010. Monitoring Regional Riparian Forest Cover Change Using Stratified Sampling and Multiresolution Imagery. Journal of the American Water Resources Association (JAWRA) 46(2):334-343. DOI: 10.1111/j.1752-1688.2010.00424.x Abstract:, The Chesapeake Bay watershed encompasses 165,760 km2 of land area with 464,098 km of rivers and streams. As part of the Chesapeake Bay restoration effort, state and federal partners have committed to restoring 26,000 miles (41,843 km) of riparian forest buffers. Monitoring trends in riparian forest buffers over large areas is necessary to evaluate the efficacy of these restoration efforts. A sampling approach for estimating change in riparian forest cover from 1993/1994 to 2005 was developed and implemented in Anne Arundel County, Maryland, to exemplify a method that could be applied throughout the Bay watershed. All stream reaches in the county were stratified using forest cover change derived from Landsat imagery. A stratified random sample of 219 reaches was selected and forest cover change within the riparian buffer of each sampled reach was interpreted from high-resolution aerial photography. The estimated footprint of gross change in riparian forest cover (i.e., the sum of gross gain and gross loss) for the county was 1.83% (SE = 0.22%). Stratified sampling taking advantage of a priori knowledge of locations of change proved to be a practical and efficient protocol for estimating riparian forest buffer change at the county scale and the protocol would readily extend to much broader scale monitoring. [source] Refuge-mediated apparent competition in plant,consumer interactionsECOLOGY LETTERS, Issue 1 2010John L. Orrock Abstract At the intersection of consumer behaviour and plant competition is the concept of refuge-mediated apparent competition: an indirect interaction whereby plants provide a refuge for a shared consumer, subsequently increasing consumer pressure on another plant species. Here, we use a simple model and empirical examples to develop and illustrate the concept of refuge-mediated apparent competition. We find that the likelihood that an inferior competitor will succeed via refuge-mediated apparent competition is greater when competitors have similar resource requirements and when consumers exhibit a strong response to the refuge and high attack rates on the superior competitor. Refuge-mediated apparent competition may create an emergent Allee effect, such that a species invades only if it is sufficiently abundant to alter consumer impact on resident species. This indirect interaction may help explain unresolved patterns observed in biological invasion, such as the different physical structure of invasive exotic plants, the lag phase, and the failure of restoration efforts. Given the ubiquity of refuge-seeking behaviour by consumers and the ability of consumers to alter the outcome of direct competition among plants, refuge-mediated apparent competition may be an underappreciated mechanism affecting the composition and diversity of plant communities. Ecology Letters (2010) 13: 11,20 [source] Community maturity, species saturation and the variant diversity,productivity relationships in grasslandsECOLOGY LETTERS, Issue 12 2006Qinfeng Guo Abstract Detailed knowledge of the relationship between plant diversity and productivity is critical for advancing our understanding of ecosystem functioning and for achieving success in habitat restoration efforts. However, effects and interactions of diversity, succession and biotic invasions on productivity remain elusive. We studied newly established communities in relation to preexisting homogeneous vegetation invaded by exotic plants in the northern Great Plains, USA, at four study sites for 3 years. We observed variant diversity,productivity relationships for the seeded communities (generally positive monotonic at three sites and non-monotonic at the other site) but no relationships for the resident community or the seeded and resident communities combined at all sites and all years. Community richness was enhanced by seeding additional species but productivity was not. The optimal diversity (as indicated by maximum productivity) changed among sites and as the community developed. The findings shed new light on ecosystem functioning of biodiversity under different conditions and have important implications for restoration. [source] Copper toxicity thresholds for important restoration grass species of the western United States,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002Mark W. Abstract Copper toxicity thresholds for plant species that are used in restoration activities in western North America have not been established. As a result, ecological risk assessments must rely on toxicity thresholds established for agronomic species, which usually differ from those of species used in restoration. Thus, risk assessors have the potential for classifying sites as phytotoxic to perennial, nonagronomic species and calling for intensive remediation activities that may not be necessary. The objective of this study was to provide a better estimate of Cu toxicity thresholds for five grass species that are commonly used in restoration efforts in the western United States. We used a greenhouse screening study where seedlings of introduced redtop (Agrostis gigantea Roth.), the native species slender wheatgrass (Elymus trachycaulus [Link] Gould ex Shinners var. Pryor), tufted hairgrass (Deschampsia caespitosa [L.] Beauvois), big bluegrass (Poa secunda J. Presl var. Sherman), and basin wildrye (Leymus cinereus [Scribner&Merrill] A. Löve var. Magnar) and the agricultural species common wheat (Triticum aestivum L.) were grown in sand culture and exposed to supplemental concentrations of soluble Cu of 0 (control), 50, 100, 150, 200, 250, and 300 mg/L. We determined six measures of toxicity: the 60-d mean lethal concentration (LC50), 60-d mean effective concentration (EC50)-plant, 60-d EC50-shoot, 60-d EC50-root, phytotoxicity threshold (PT50)-shoot, and the PT50-root. Results suggest that these restoration grass species generally have higher Cu tolerance than agronomic species reported in the past. Of the species tested, redtop appeared to be especially tolerant of high levels of substrate and tissue Cu. Values of EC50-plant for restoration grasses were between 283 and 710 mg Cu/L compared to 120 mg Cu/L for common wheat. Measured PT50-shoot values were between 737 and 10,792 mg Cu/ L. These reported thresholds should be more useful for risk assessors than those currently used, which are based largely on agronomic crops. [source] Ontogenetic selection on hatchery salmon in the wild: natural selection on artificial phenotypesEVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 4 2010Michael M. Bailey Abstract Captive rearing often alters the phenotypes of organisms that are destined for release into the wild. Natural selection on these unnatural phenotypes could have important consequences for the utility of captive rearing as a restoration approach. We show that normal hatchery practices significantly advance the development of endangered Atlantic salmon (Salmo salar) fry by 30+ days. As a result, hatchery fry might be expected to face strong natural selection resulting from their developmental asynchrony. We investigated patterns of ontogenetic selection acting on hatchery produced salmon fry by experimentally manipulating fry development stage at stocking. Contrary to simple predictions, we found evidence for strong stabilizing selection on the ontogeny of unfed hatchery fry, with weaker evidence for positive directional selection on the ontogeny of fed fry. These selection patterns suggest a seasonally independent tradeoff between abiotic or biotic selection favoring advanced development and physiological selection linked to risk of starvation in unfed fry. We show, through a heuristic exercise, how such selection on ontogeny may exacerbate problems in restoration efforts by impairing fry productivity and reducing effective population sizes by 13,81%. [source] Seed supply for broadscale restoration: maximizing evolutionary potentialEVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 4 2008Linda M. Broadhurst Abstract Restoring degraded land to combat environmental degradation requires the collection of vast quantities of germplasm (seed). Sourcing this material raises questions related to provenance selection, seed quality and harvest sustainability. Restoration guidelines strongly recommend using local sources to maximize local adaptation and prevent outbreeding depression, but in highly modified landscapes this restricts collection to small remnants where limited, poor quality seed is available, and where harvesting impacts may be high. We review three principles guiding the sourcing of restoration germplasm: (i) the appropriateness of using ,local' seed, (ii) sample sizes and population characteristics required to capture sufficient genetic diversity to establish self-sustaining populations and (iii) the impact of over-harvesting source populations. We review these topics by examining current collection guidelines and the evidence supporting these, then we consider if the guidelines can be improved and the consequences of not doing so. We find that the emphasis on local seed sourcing will, in many cases, lead to poor restoration outcomes, particularly at broad geographic scales. We suggest that seed sourcing should concentrate less on local collection and more on capturing high quality and genetically diverse seed to maximize the adaptive potential of restoration efforts to current and future environmental change. [source] Linking ecological theory with stream restorationFRESHWATER BIOLOGY, Issue 4 2007P. S. LAKE Summary 1. Faced with widespread degradation of riverine ecosystems, stream restoration has greatly increased. Such restoration is rarely planned and executed with inputs from ecological theory. In this paper, we seek to identify principles from ecological theory that have been, or could be, used to guide stream restoration. 2. In attempts to re-establish populations, knowledge of the species' life history, habitat template and spatio-temporal scope is critical. In many cases dispersal will be a critical process in maintaining viable populations at the landscape scale, and special attention should be given to the unique geometry of stream systems 3. One way by which organisms survive natural disturbances is by the use of refugia, many forms of which may have been lost with degradation. Restoring refugia may therefore be critical to survival of target populations, particularly in facilitating resilience to ongoing anthropogenic disturbance regimes. 4. Restoring connectivity, especially longitudinal connectivity, has been a major restoration goal. In restoring lateral connectivity there has been an increasing awareness of the riparian zone as a critical transition zone between streams and their catchments. 5. Increased knowledge of food web structure , bottom-up versus top-down control, trophic cascades and subsidies , are yet to be applied to stream restoration efforts. 6. In restoration, species are drawn from the regional species pool. Having overcome dispersal and environmental constraints (filters), species persistence may be governed by local internal dynamics, which are referred to as assembly rules. 7. While restoration projects often define goals and endpoints, the succession pathways and mechanisms (e.g. facilitation) by which these may be achieved are rarely considered. This occurs in spite of a large of body of general theory on which to draw. 8. Stream restoration has neglected ecosystem processes. The concept that increasing biodiversity increases ecosystem functioning is very relevant to stream restoration. Whether biodiversity affects ecosystem processes, such as decomposition, in streams is equivocal. 9. Considering the spatial scale of restoration projects is critical to success. Success is more likely with large-scale projects, but they will often be infeasible in terms of the available resources and conflicts of interest. Small-scale restoration may remedy specific problems. In general, restoration should occur at the appropriate spatial scale such that restoration is not reversed by the prevailing disturbance regime. 10. The effectiveness and predictability of stream ecosystem restoration will improve with an increased understanding of the processes by which ecosystems develop and are maintained. Ideas from general ecological theory can clearly be better incorporated into stream restoration projects. This will provide a twofold benefit in providing an opportunity both to improve restoration outcomes and to test ecological theory. [source] Recovery of anuran community diversity following habitat replacementJOURNAL OF APPLIED ECOLOGY, Issue 1 2010David Lesbarrères Summary 1.,Recently habitat degradation, road construction and traffic have all increased with human populations, to the detriment of aquatic habitats and species. While numerous restoration programmes have been carried out, there is an urgent need to follow their success to better understand and compensate for the decline of amphibian populations. To this end, we followed the colonization success of an anuran community across multiple replacement ponds created to mitigate large-scale habitat disturbance. 2.,Following construction of a highway in western France, a restoration project was initiated in 1999 and the success of restoration efforts was monitored. The amphibian communities of eight ponds were surveyed before they were destroyed. Replacement ponds were created according to precise edaphic criteria, consistent with the old pond characteristics and taking into account the amphibian species present in each. The presence of amphibian species was recorded every year during the breeding period for 4 years following pond creation. 3.,Species richness initially declined following construction of the replacement ponds but generally returned to pre-construction levels. Species diversity followed the same pattern but took longer to reach the level of diversity recorded before construction. Pond surface area, depth and sun exposure were the most significant habitat characteristics explaining both amphibian species richness and diversity. Similarly, an increase in the number of vegetation strata was positively related to anuran species richness, indicating the need to maintain a heterogeneous landscape containing relatively large open wetland areas. 4.,Synthesis and applications. We highlight the species-specific dynamics of the colonization process, including an increase in the number of replacement ponds inhabited over time by some species and, in some cases, an increase in population size. Our work suggests that successful replacement ponds can be designed around simple habitat features, providing clear benefits for a range of amphibian species, which will have positive cascading effects on local biodiversity. However, consideration must also be given to the terrestrial buffer zone when management strategies are being planned. Finally, our study offers insight into the successful establishment of anuran communities over a relatively short time in restored or replacement aquatic environments. [source] Anthropogenic impacts on lake and stream ecosystems, and approaches to restorationJOURNAL OF APPLIED ECOLOGY, Issue 6 2007MARTIN SØNDERGAARD Summary 1Freshwater ecosystems have long been affected by numerous types of human interventions that have a negative impact on their water quality and ecological state. Fortunately, in most western countries the input of sewage to freshwater systems has been reduced, but hydromorphological alterations, eutrophication-related turbidity and loss of biodiversity remain major problems in many parts of the world. Such impacts prevent the achievement of a high or good ecological state, as defined by the European Water Framework Directive (WFD) or other standards. 2This paper synthesizes and links the findings presented in the seven papers of this special profile, focusing on the effects of anthropogenic stressors on freshwater ecosystems and on how to maintain and restore ecological quality. The papers cover a broad range of research areas and methods, but are all centred on the relationship between dispersal barriers, the connectivity of waterways and the restoration of rivers and lakes. 3The construction of dams and reservoirs disturbs the natural functioning of many streams and rivers and shore-line development around lakes may reduce habitat complexity. New methods demonstrate how reservoirs may have a severe impact on the distribution and connectivity of fish populations, and new techniques illustrate the potential of using graph theory and connectivity models to illustrate the ecological implications. Hydromorphologically degraded rivers and streams can be restored by addition of wood debris, but ,passive' restoration via natural wood recruitment may be preferable. The most cost-effective way to restore streams may also include information campaigns to farmers on best management practices. Removal of zooplanktivorous fish often has marked positive effects on trophic structure in lakes, but there is a tendency to return to turbid conditions after 8,10 years or less unless fish removal is repeated. 4Synthesis and applications. Development of new methods, as well as derivation of more general conclusions from reviewing the effects of previous restoration efforts, are crucial to achieve progress in applied freshwater research. The papers contained in this Special Profile contribute on both counts, as well as illustrating the importance of well-designed research projects and monitoring programmes to record the effects of the interventions. Such efforts are vital if we are to improve our knowledge of freshwater systems and to elaborate the best and most cost-effective recommendations. They may also help in achieving a good ecological state or potential in water bodies by 2015, as demanded by the European WFD. [source] Beyond control: wider implications for the management of biological invasionsJOURNAL OF APPLIED ECOLOGY, Issue 5 2006PHILIP E. HULME Summary 1Government departments, environmental managers and conservationists are all facing escalating pressure to address and resolve a diversity of invasive alien species (IAS) problems. Yet much research to date is primarily concerned with quantifying the scale of the problem rather than delivering robust solutions and has not adequately addressed all stages of the invasion process, and only a few studies embrace the ecosystem approach. 2Three successive steps, prevention, eradication and control, form the cornerstones of recommended best practices aimed at managing IAS. The goal of such actions is the restoration of ecosystems to preserve or re-establish native biodiversity and functions. 3Prevention is widely promoted as being a more environmentally desirable strategy than actions undertaken after IAS establishment, yet is hindered by the difficulty in separating invasive from non-invasive alien species. Furthermore, the high number of candidate IAS, the investment required in taxonomic support and inspection capacity, and the expense of individual risk assessments may act against the net benefits of prevention. More rewarding avenues may be found by pursuing neural networks to predict the potential composition of pest assemblages in different regions and/or model introduction pathways to identify likely invasion hubs. 4Rapid response should be consequent on early detection but, when IAS are rare, detection rates are compromised by low occurrence and limited power to discern significant changes in abundance. Power could be increased by developing composite indicators that track trends in a suite of IAS with similar life histories, shared pathways and/or habitat preferences. 5The assessment of management options will benefit from an ecosystem perspective that considers the manipulation of native competitors, consumers and mutualists, and reviews existing management practices as well as mitigates other environmental pressures. The ease with which an IAS can be targeted should not only address the direct management effects on population dynamics but also indirect effects on community diversity and structure. Where the goal is to safeguard native biodiversity, such activities should take into account the need to re-establish native species and/or restore ecosystem function in the previously affected area. 6Synthesis and applications. A comprehensive approach to IAS management should include consideration of the: (i) expected impacts; (ii) technical options available; (iii) ease with which the species can be targeted; (iv) risks associated with management; (v) likelihood of success; and (vi) extent of public concern and stakeholder interest. For each of these issues, in addition to targeting an individual species, the management of biological invasions must also incorporate an appreciation of other environmental pressures, the importance of landscape structure, and the role of existing management activities and restoration efforts. [source] Enrichment planting does not improve tree restoration when compared with natural regeneration in a former pine plantation in Kibale National Park, UgandaAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009Patrick A. Omeja Abstract Given the high rates of deforestation and subsequent land abandonment, there are increasing calls to reforest degraded lands; however, many areas are in a state of arrested succession. Plantations can break arrested succession and the sale of timber can pay for restoration efforts. However, if the harvest damages native regeneration, it may be necessary to intervene with enrichment planting. Unfortunately, it is not clear when intervention is necessary. Here, we document the rate of biomass accumulation of planted seedlings relative to natural regeneration in a harvested plantation in Kibale National Park, Uganda. We established two 2-ha plots and in one, we planted 100 seedlings of each of four native species, and we monitored all tree regeneration in this area and the control plot. After 4 years, naturally regenerating trees were much taller, larger and more common than the planted seedlings. Species richness and two nonparametric estimators of richness were comparable between the plots. The cumulative biomass of planted seedlings accounted for 0.04% of the total above-ground tree biomass. The use of plantations facilitated the growth of indigenous trees, and enrichment planting subsequent to harvesting was not necessary to obtain a rich tree community with a large number of new recruits. Résumé Étant donné le rythme élevé de déforestation et, par la suite, d'abandon de terres, il y a des demandes croissantes pour repeupler les terrains dégradés; cependant, de nombreuses surfaces se trouvent dans un état de succession interrompu. Des plantations peuvent mettre fin à cette succession stoppée, et la vente de grumes peut financer les efforts de reforestation. Pourtant, si les prélèvements d'arbres endommagent la régénération naturelle, il peut être nécessaire d'intervenir avec des plantations d'appoint. Malheureusement, il n'est pas toujours facile de savoir quand une intervention est nécessaire. Nous documentons ici le taux d'accumulation de biomasse dans des jeunes arbres replantés par rapport à la régénération naturelle dans une plantation exploitée, à l'intérieur du Parc National de Kibale, en Ouganda. Nous avons établi deux parcelles de deux hectares et, dans une, nous avons repiqué 100 plants de chacune des quatre espèces natives. Nous avons ensuite suivi la régénération de tous les arbres dans cette parcelle et dans la parcelle témoin. Après quatre ans, les arbres provenant de la régénération naturelle étaient beaucoup plus grands, plus gros et plus abondants que les arbres replantés. La richesse en espèces et deux estimateurs nonparamétriques de la richesse étaient comparables dans les deux parcelles. La biomasse cumulée des jeunes arbres plantés comptait pour 0,04% de la biomasse aérienne totale des arbres. Le recours à des plantations a facilité la croissance d'arbres indigènes et la plantation d'appoint faisant suite à l'exploitation ne fut pas nécessaire pour obtenir une communauté d'arbres riche, avec un grand nombre de nouvelles recrues. [source] Monitoring Regional Riparian Forest Cover Change Using Stratified Sampling and Multiresolution Imagery,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2010Peter R. Claggett Claggett, Peter R., Judy A. Okay, and Stephen V. Stehman, 2010. Monitoring Regional Riparian Forest Cover Change Using Stratified Sampling and Multiresolution Imagery. Journal of the American Water Resources Association (JAWRA) 46(2):334-343. DOI: 10.1111/j.1752-1688.2010.00424.x Abstract:, The Chesapeake Bay watershed encompasses 165,760 km2 of land area with 464,098 km of rivers and streams. As part of the Chesapeake Bay restoration effort, state and federal partners have committed to restoring 26,000 miles (41,843 km) of riparian forest buffers. Monitoring trends in riparian forest buffers over large areas is necessary to evaluate the efficacy of these restoration efforts. A sampling approach for estimating change in riparian forest cover from 1993/1994 to 2005 was developed and implemented in Anne Arundel County, Maryland, to exemplify a method that could be applied throughout the Bay watershed. All stream reaches in the county were stratified using forest cover change derived from Landsat imagery. A stratified random sample of 219 reaches was selected and forest cover change within the riparian buffer of each sampled reach was interpreted from high-resolution aerial photography. The estimated footprint of gross change in riparian forest cover (i.e., the sum of gross gain and gross loss) for the county was 1.83% (SE = 0.22%). Stratified sampling taking advantage of a priori knowledge of locations of change proved to be a practical and efficient protocol for estimating riparian forest buffer change at the county scale and the protocol would readily extend to much broader scale monitoring. [source] EVAPOTRANSPIRATION DYNAMICS AT AN ECOHYDROLOGICAL RESTORATION SITE: AN ENERGY BALANCE AND REMOTE SENSING APPROACH,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2006Jason W. Oberg ABSTRACT: Little work is reported where spatial methods are employed to monitor evapotranspiration (ET) changes as a result of vegetation and wetland restoration. A remote sensing approach with the Surface Energy Balance Algorithm for Land (SEBAL) for estimating ET at The Nature Conservancy's Glacial Ridge prairie-wetland restoration site in northwestern Minnesota is presented. The calibrated 24-hour ET from SEBAL was estimated with an average error of prediction of ,4.3 percent. Monthly, interseasonal, and seasonal ET for the period of June to September (2000 to 2003) from three adjacent land-uses: a hydrologic control preserved wetland; a treated or restored site; and a nontreated or impacted wetland, were used in the study. Results from comparing ET behavior to the preserve suggest restoration efforts have affected monthly and seasonal ET within the treated site. Spatial average standard deviations of the seasonal ET within the preserve, treated, and nontreated sites give 47.3, 75.7, and 109.9 mm, respectively, suggesting hydrologic stabilization within the treated site. Monthly and interseasonal comparisons show similar behavior to that of the seasonal data, where monthly correlations suggest increasing agreement within the treated site, approaching those within the preserve. [source] USING MARYLAND'S STREAM CORRIDOR ASSESSMENT SURVEY TO PRIORITIZE WATERSHED RESTORATION EFFORTS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2002Kenneth T. Yetman ABSTRACT: The Stream Corridor Assessment survey has been developed by the Maryland Department of Natural Resources as a watershed management tool to identify environmental problems and to help prioritize restoration opportunities on a watershed basis. Potential environmental problems commonly identified during the survey include: stream channel alterations, excessive bank erosion, exposed pipes, inadequate stream buffers, fish migration blockages, trash dumping sites, near stream construction, pipe outfalls, and unusual conditions. In addition, the survey records information on the location of potential wetlands creation sites and collects data on the general condition of instream and riparian habitats. Over the past several years, in collaboration with the Maryland Conservation Corps, watershed associations, and local governments, more than 3,293 km (2,046 miles) of Maryland streams have been surveyed. Overall, the survey has proven to be a cost effective starting point for many watershed restoration efforts. [source] Biology and establishment of mountain shrubs on mining disturbances in the Rocky Mountains, USALAND DEGRADATION AND DEVELOPMENT, Issue 5 2003M. W. Paschke Abstract The Rocky Mountains of the western United States contain many economically important natural resources. Increasing development of these resources has lead to land degradation, which often requires restoration efforts. A common type of disturbance in this region is mineral extraction and these activities often occur in zones of vegetation dominated by shrubs. These mined lands have proven to be particularly challenging to restore to native shrub cover. Mountain shrubland species such as big sagebrush (Artemisia tridentata), antelope bitterbrush (Purshia tridentata), Saskatoon serviceberry (Amelanchier alnifolia), black chokecherry (Prunus virginiana), mountain mahogany (Cercocarpus montanus), and snowberry (Symphoricarpos sp.) are crucial species for wildlife in this region due to the seasonal dependence of many wildlife species on the mountain shrubland zones. The development of successful restoration techniques for these key shrub species is therefore important for the continued and sustainable utilization of natural resources in the Rocky Mountains. The purpose of this literature review is to provide a reference to land managers working on woody plant establishment on mining disturbances in mountain shrublands in the Rocky Mountains. This review covers the biology, ecology, and propagation of six shrub species that are of primary importance for meeting regulatory compliance in this region. Based upon this survey of the published literature, we conclude that successful establishment of these species has most often involved: (1) utilization of local shrub ecotypes, varieties or subspecies in reclamation efforts, (2) protection from browsing during the establishment phase, (3) strategies for avoiding herbaceous competition, and (4) providing a source of mutualistic soil organisms. Additional specific recommendations for each of these species are discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source] Do introduced North American beavers Castor canadensis engineer differently in southern South America?MAMMAL REVIEW, Issue 1 2009An overview with implications for restoration ABSTRACT 1Twenty-five pairs of North American beavers Castor canadensis Kuhl were introduced to Tierra del Fuego Island in 1946. The population has expanded across the archipelago, arriving at the Chilean mainland by the mid-1990s. Densities range principally between 0.5,2.05 colonies/km. They have an impact on between 30,50% of stream length and occupy 2,15% of landscape area with impoundments and meadows. Beaver impacts constitute the largest landscape-level alteration in subantarctic forests since the last ice age. 2The colonization pattern, colony densities and impacted area indicate that habitat in the austral archipelago is optimal for beaver invasion, due to low predator pressure and suitable food resources. Nothofagus pumilio forests are particularly appropriate habitat, but a more recent invasion is occurring in adjacent steppe ecosystems. Nonetheless, Nothofagus reproductive strategies are not well adapted to sustain high beaver population levels. 3Our assessment shows that at the patch-scale in stream and riparian ecosystems, the direction and magnitude of exotic beaver impacts are predictable from expectations derived from North American studies, relating ecosystem engineering with underlying ecological mechanisms such as the relationships of habitat heterogeneity and productivity on species richness and ecosystem function. 4Based on data from the species' native and exotic range, our ability to predict the effects of beavers is based on: (i) understanding the ecological relationships of its engineering effects on habitat, trophic dynamics and disturbance regimes, and (ii) having an adequate comprehension of the landscape context and natural history of the ecosystem being engineered. 5We conclude that beaver eradication strategies and subsequent ecosystem restoration efforts, currently being considered in southern Chile and Argentina, should focus on the ecology of native ecosystems rather than the biology of this invasive species per se. Furthermore, given the nature of the subantarctic landscape, streams will probably respond to restoration efforts more quickly than riparian ecosystems. [source] A restoration genetics guide for coral reef conservationMOLECULAR ECOLOGY, Issue 12 2008ILIANA B. BAUMS Abstract Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects. [source] Short-Term and Long-Term Effects of Soil Ripping, Seeding, and Fertilization on the Restoration of a Tropical RangelandRESTORATION ECOLOGY, Issue 2010David Kinyua Rangeland degradation is a serious problem in semiarid Africa. Extensive areas of bare, compacted, nutrient-poor soils limit the productivity and biodiversity of many areas. We conducted a set of restoration experiments in which all eight combinations of soil tilling, fertilization, and seeding with native perennial grasses were carried out in replicated plots. After 6 months, little aboveground biomass was produced in plots without tilling, regardless of seeding or fertilization. Tilling alone tripled plant biomass, mostly of herbaceous forbs and annual grasses. Perennial grasses were essentially limited to plots that were both tilled and seeded. The addition of fertilizer had no significant additional effects. After 7 years, vegetation had declined, but there were still large differences among treatments. After 10 years, one tilled (and seeded) plot had reverted to bare ground, but the other tilled plots still had substantial vegetation. Only one seeded grass (Cenchrus ciliaris) was still a contributor to total cover after 10 years. We suggest that restoration efforts on these soils be directed first to breaking up the surface crust, and second to the addition of desirable seed. A simple ripping trial inspired by this experiment showed considerable promise as a low-cost restoration technique. [source] An Introduction to a Special Issue on Large-Scale Submerged Aquatic Vegetation Restoration Research in the Chesapeake Bay: 2003,2008RESTORATION ECOLOGY, Issue 4 2010Deborah Shafer The Chesapeake Bay is one of the world's largest estuaries. Dramatic declines in the abundance and distribution of submerged aquatic vegetation (SAV) in the Chesapeake Bay over the last few decades led to a series of management decisions aimed at protecting and restoring SAV populations throughout the bay. In 2003, the Chesapeake Bay Program established a goal of planting 405 ha of SAV by 2008. Realizing that such an ambitious goal would require the development of large-scale approaches to SAV restoration, a comprehensive research effort was organized, involving federal and state agencies, academia, and the private sector. This effort differs from most other SAV restoration programs due to a strong emphasis on the use of seeds rather than plants as planting stock, a decision based on the relatively low labor requirements of seeding. Much of the research has focused on the development of tools and techniques for using seeds in large-scale SAV restoration. Since this research initiative began, an average of 13.4 ha/year of SAV has been planted in the Chesapeake Bay, compared to an average rate of 3.6 ha/year during the previous 21 years (1983,2003). The costs of conducting these plantings are on a downward trend as the understanding of the limiting factors increases and as new advances are made in applied research and technology development. Although this effort was focused in the Chesapeake Bay region, the tools and techniques developed as part of this research should be widely applicable to SAV restoration efforts in other areas. [source] Large-Scale Zostera marina (eelgrass) Restoration in Chesapeake Bay, Maryland, USA.RESTORATION ECOLOGY, Issue 4 2010Associated Costs, Part I: A Comparison of Techniques The Chesapeake Bay, like many other temperate estuaries, has exhibited dramatic declines in the abundance of submerged aquatic vegetation (SAV) during the later half of the twentieth century. Because of the functions SAV serve in maintaining a healthy estuarine ecosystem, SAV restoration has become an important component of Chesapeake Bay restoration. Specifically, recent water quality improvements in areas from which populations of Zostera marina (eelgrass) have been extirpated have suggested that Z. marina restoration could succeed. Early restoration efforts involved transplanting Z. marina plants from healthy source beds to restoration locations, but this was labor intensive, time consuming, expensive, and potentially detrimental to donor beds. This multi-year project investigated new techniques for large-scale Z. marina seed collection and processing and compared two seed dispersal methods to evaluate cost effectiveness. Tens of millions of mature Z. marina seeds were collected through snorkeling, SCUBA, or with a mechanical harvester. Seed storage conditions and processing techniques were manipulated in order to maximize seed yield. Seeds were dispersed using two methods: spring seed buoys and fall seed broadcasts. Our costs for planting 1 ha of bottom with Z. marina seeds ranged from $6,674 to $165,699 depending on seeding density and dispersal method used. The average cost per Z. marina seed was $0.17. Interannual variations in seed collection yield and seed viability after summer storage had great impact on final costs. Our results suggest that the use of seeds for large-scale Z. marina restoration offers a competitive advantage to more traditional transplanting methods. [source] The Use of Extant Non-Indigenous Tortoises as a Restoration Tool to Replace Extinct Ecosystem EngineersRESTORATION ECOLOGY, Issue 1 2010Christine J. Griffiths We argue that the introduction of non-native extant tortoises as ecological replacements for extinct giant tortoises is a realistic restoration management scheme, which is easy to implement. We discuss how the recent extinctions of endemic giant Cylindraspis tortoises on the Mascarene Islands have left a legacy of ecosystem dysfunction threatening the remnants of native biota, focusing on the island of Mauritius because this is where most has been inferred about plant,tortoise interactions. There is a pressing need to restore and preserve several Mauritian habitats and plant communities that suffer from ecosystem dysfunction. We discuss ongoing restoration efforts on the Mauritian offshore Round Island, which provide a case study highlighting how tortoise substitutes are being used in an experimental and hypothesis-driven conservation and restoration project. The immediate conservation concern was to prevent the extinction and further degradation of Round Island's threatened flora and fauna. In the long term, the introduction of tortoises to Round Island will lead to valuable management and restoration insights for subsequent larger-scale mainland restoration projects. This case study further highlights the feasibility, versatility and low-risk nature of using tortoises in restoration programs, with particular reference to their introduction to island ecosystems. Overall, the use of extant tortoises as replacements for extinct ones is a good example of how conservation and restoration biology concepts applied at a smaller scale can be microcosms for more grandiose schemes and addresses more immediate conservation priorities than large-scale ecosystem rewilding projects. [source] Alternatives for Reintroducing a Rare Ecotone Species: Manually Thinned Forest Edge versus Restored Habitat RemnantRESTORATION ECOLOGY, Issue 5 2009Jennifer Possley Abstract Species native to ecotones are often overlooked in restoration efforts despite the increasing rarity of ecotone habitat. In fragmented, fire-suppressed landscapes, true ecotone may no longer exist. Restoration biologists interested in reintroducing ecotone species must decide whether to plant them in historic ecotones maintained by manual thinning or whether to opt for discrete restoration areas that are easier to maintain. We investigated these two alternatives with Lantana canescens, a rare tropical shrub native to the ecotone between pine and hardwood forests of Miami-Dade County, Florida, U.S.A. Our short-term findings show that after 15 and 18 months, survival of transplants was 69% in a restored site and 65% and 84% in two historic ecotone sites. The restored site had significantly higher photosynthetically active radiation (PAR) (75%) than the historic ecotones (25,39%). Correspondingly, 267 seedlings have recruited at the restored site, whereas only 8 have emerged at both historic ecotone sites. Seedling establishment was associated with higher PAR at the restored site. We found that overall population sustainability was higher at the restored site where there is the additional benefit of less maintenance. Our work suggests that, by reducing succession, a discrete restoration area can approach the historic conditions of hardwood/pine forest ecotone more closely than degraded historic ecotones themselves. We present a viable solution for conserving rare ecotone species when their natural habitat and the processes that maintained it no longer exist. [source] Using Remote Sensing to Evaluate the Influence of Grassland Restoration Activities on Ecosystem Forage Provisioning ServicesRESTORATION ECOLOGY, Issue 4 2009Carolyn M. Malmstrom Abstract As valuation of ecosystem goods and services derived from ecological processes becomes increasingly important in environmental decision-making, the need to quantify how restoration activities influence ecosystem function has grown more urgent, particularly within income-generating or subsistence-providing landscapes where economic needs and biodiversity goals must be balanced. However, quantification of restoration effects is often hindered by logistical issues, which include (1) the difficulty of systematically monitoring responses over large areas and (2) lack or loss of comparison sites necessary for assessing treatment effect. We explored the use of remote sensing to quantify the effects of native grass seeding and prescribed burns on ecosystem forage provisioning services within a California (U.S.A.) rangeland landscape. We used Landsat time series to monitor forage (green biomass) dynamics within 296 ha of treatment areas,distributed throughout a 36-km2 watershed,for 6 years and to identify post hoc comparison areas when a priori comparisons were lacking. Remote sensing analysis documented gains and losses in forage provisioning services due to restoration efforts and provided critical information for adaptive management. Our results demonstrate the degree to which invaded grasslands can be resistant to change and suggest that increasing the functional complexity of restoration mixes might help increase forage availability and reduce opportunities for weed reinvasion. [source] Wetland Restoration in the New Millennium: Do Research Efforts Match Opportunities?RESTORATION ECOLOGY, Issue 3 2008Kelly I. Wagner Abstract Of 311 papers on wetland restoration, only 15 concerned large-scale experimentation in restoration sites. Most papers described what happened, reported on small field experiments, or discussed restoration targets. While these are important topics, our opinion is that we lose significant opportunities to learn how to recover populations, community structure, and ecosystem processes, and we limit our ability to document variability and whole-system responses, when we do not experiment at large scales. We suggest that, wherever possible, large projects facilitate field tests of alternative restoration approaches. Furthermore, we encourage researchers to take advantage of major restoration efforts by conducting large field experiments, assessing multiple responses, and offering restoration guidance in an adaptive framework. [source] Restoration Ecology and Invasive Riparian Plants: An Introduction to the Special Section on Tamarix spp. in Western North AmericaRESTORATION ECOLOGY, Issue 1 2008Patrick B. Shafroth Abstract River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarix occupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally. [source] |