Restoration Approach (restoration + approach)

Distribution by Scientific Domains


Selected Abstracts


Ontogenetic selection on hatchery salmon in the wild: natural selection on artificial phenotypes

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 4 2010
Michael M. Bailey
Abstract Captive rearing often alters the phenotypes of organisms that are destined for release into the wild. Natural selection on these unnatural phenotypes could have important consequences for the utility of captive rearing as a restoration approach. We show that normal hatchery practices significantly advance the development of endangered Atlantic salmon (Salmo salar) fry by 30+ days. As a result, hatchery fry might be expected to face strong natural selection resulting from their developmental asynchrony. We investigated patterns of ontogenetic selection acting on hatchery produced salmon fry by experimentally manipulating fry development stage at stocking. Contrary to simple predictions, we found evidence for strong stabilizing selection on the ontogeny of unfed hatchery fry, with weaker evidence for positive directional selection on the ontogeny of fed fry. These selection patterns suggest a seasonally independent tradeoff between abiotic or biotic selection favoring advanced development and physiological selection linked to risk of starvation in unfed fry. We show, through a heuristic exercise, how such selection on ontogeny may exacerbate problems in restoration efforts by impairing fry productivity and reducing effective population sizes by 13,81%. [source]


A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers

JOURNAL OF APPLIED ECOLOGY, Issue 3 2010
Sonja C. Jähnig
Summary 1.,Hydromorphological river restoration usually leads to habitat diversification, but the effects on benthic invertebrates, which are frequently used to assess river ecological status, are minor. We compared the effects of river restoration on morphology and benthic invertebrates by investigating 26 pairs of non-restored and restored sections of rivers in Austria, Czech Republic, Germany, Italy and the Netherlands. 2.,Sites were grouped according to (1) region: central Europe vs. southern Europe; (2) river type: mountain vs. lowland rivers; (3) restoration approach: active vs. passive restoration and (4) a combination of these parameters. All sites were sampled according to the same field protocol comprising hydromorphological surveys of river and floodplain mesohabitats, microhabitats at the river bottom and habitat-specific sampling of benthic invertebrates. Restoration effects were compared using Shannon,Wiener Indices (SWIs) of mesohabitats, microhabitats and invertebrate communities. Differences in metric values between non-restored and restored sites were compared for 16 metrics that evaluated hydromorphology and the benthic invertebrate community. 3.,Mean SWIs differed for both mesohabitats (1·1 non-restored, 1·7 restored) and microhabitats (1·0 non-restored, 1·3 restored), while SWIs for invertebrate communities were not significantly different (2·4 non-restored, 2·3 restored). Meso- and microhabitat metrics in the restored sections were usually higher compared with the non-restored sections, but the effects on invertebrate metrics were negligible. 4.,Measures in southern Europe and mountainous regions yielded larger differences between non-restored and restored sections of rivers. Differences in the meso- and microhabitat metrics were largest for actively restored sections of central European mountain rivers and rivers from southern Europe, followed by passively restored mountain rivers in central Europe. The smallest differences were observed for lowland sites. There was no significant restoration effect on invertebrate metrics in any categories. 5.,Synthesis and applications. Restoration measures addressing relatively short river sections (several hundred metres) are successful in terms of improving habitat diversity of the river and its floodplain. Active restoration measures are suitable if short-term changes in hydromorphology are desired. To realize changes in benthic invertebrate community composition, habitat restoration within a small stretch is generally not sufficient. We conclude that restoring habitat on a larger scale, using more comprehensive measures and tackling catchment-wide problems (e.g. water quality, source populations) are required for a recovery of the invertebrate community. [source]


Estuarine Restoration of Submersed Aquatic Vegetation: The Nursery Bed Effect

RESTORATION ECOLOGY, Issue 4 2010
Angela Hengst
The historic decline of submersed aquatic vegetation (SAV) in mesohaline regions of Chesapeake Bay, United States involved a diversity of plant species. The recent modest recovery is mostly, however, associated with a single, prolific but ephemeral species, Ruppia maritima. Two previously abundant and more stable species, Potamogeton perfoliatus and Stuckenia pectinata, have shown virtually no evidence of recovery. Based on previous studies that demonstrated the ability of R. maritima stands to enhance water clarity and nutrient conditions for SAV growth, we hypothesized that these beds would serve as effective "nursery" areas to incite transplant success for other SAV. We conducted experiments in a two-phase study at small and large spatial scales designed to explore this "nursery effect" as a restoration approach to increase plant species diversity. The first phase was conducted at small spatial scales to test effects of patch density by planting P. perfoliatus and S. pectinata into bare, sparse, and densely vegetated areas within three similar R. maritima beds in a tributary of Chesapeake Bay. Mean seasonal percent survivorship and shoot density were significantly higher in bare patches compared to vegetated patches. In the second phase of the study, P. perfoliatus was transplanted into separate R. maritima beds of different densities to test the effect of bed scale plant density on P. perfoliatus survival and growth. Transplant success of P. perfoliatus was positively correlated with the density of R. maritima among all sites. [source]


River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?

FRESHWATER BIOLOGY, Issue 2010
MARGARET A. PALMER
Summary 1. Stream ecosystems are increasingly impacted by multiple stressors that lead to a loss of sensitive species and an overall reduction in diversity. A dominant paradigm in ecological restoration is that increasing habitat heterogeneity (HH) promotes restoration of biodiversity. This paradigm is reflected in stream restoration projects through the common practice of re-configuring channels to add meanders and adding physical structures such as boulders and artificial riffles to restore biodiversity by enhancing structural heterogeneity. 2. To evaluate the validity of this paradigm, we completed an extensive evaluation of published studies that have quantitatively examined the reach-scale response of invertebrate species richness to restoration actions that increased channel complexity/HH. We also evaluated studies that used manipulative or correlative approaches to test for a relationship between physical heterogeneity and invertebrate diversity in streams that were not in need of restoration. 3. We found habitat and macroinvertebrate data for 78 independent stream or river restoration projects described by 18 different author groups in which invertebrate taxa richness data in response to the restoration treatment were available. Most projects were successful in enhancing physical HH; however, only two showed statistically significant increases in biodiversity rendering them more similar to reference reaches or sites. 4. Studies manipulating structural complexity in otherwise healthy streams were generally small in scale and less than half showed a significant positive relationship with invertebrate diversity. Only one-third of the studies that attempted to correlate biodiversity to existing levels of in-stream heterogeneity found a positive relationship. 5. Across all the studies we evaluated, there is no evidence that HH was the primary factor controlling stream invertebrate diversity, particularly in a restoration context. The findings indicate that physical heterogeneity should not be the driving force in selecting restoration approaches for most degraded waterways. Evidence suggests that much more must be done to restore streams impacted by multiple stressors than simply re-configuring channels and enhancing structural complexity with meanders, boulders, wood, or other structures. 6. Thematic implications: as integrators of all activities on the land, streams are sensitive to a host of stressors including impacts from urbanisation, agriculture, deforestation, invasive species, flow regulation, water extractions and mining. The impacts of these individually or in combination typically lead to a decrease in biodiversity because of reduced water quality, biologically unsuitable flow regimes, dispersal barriers, altered inputs of organic matter or sunlight, degraded habitat, etc. Despite the complexity of these stressors, a large number of stream restoration projects focus primarily on physical channel characteristics. We show that this is not a wise investment if ecological recovery is the goal. Managers should critically diagnose the stressors impacting an impaired stream and invest resources first in repairing those problems most likely to limit restoration. [source]


Wetland Restoration in the New Millennium: Do Research Efforts Match Opportunities?

RESTORATION ECOLOGY, Issue 3 2008
Kelly I. Wagner
Abstract Of 311 papers on wetland restoration, only 15 concerned large-scale experimentation in restoration sites. Most papers described what happened, reported on small field experiments, or discussed restoration targets. While these are important topics, our opinion is that we lose significant opportunities to learn how to recover populations, community structure, and ecosystem processes, and we limit our ability to document variability and whole-system responses, when we do not experiment at large scales. We suggest that, wherever possible, large projects facilitate field tests of alternative restoration approaches. Furthermore, we encourage researchers to take advantage of major restoration efforts by conducting large field experiments, assessing multiple responses, and offering restoration guidance in an adaptive framework. [source]