Response Method (response + method)

Distribution by Scientific Domains


Selected Abstracts


Inverse Modeling of Coastal Aquifers Using Tidal Response and Hydraulic Tests

GROUND WATER, Issue 6 2007
Andrés Alcolea
Remediation of contaminated aquifers demands a reliable characterization of hydraulic connectivity patterns. Hydraulic diffusivity is possibly the best indicator of connectivity. It can be derived using the tidal response method (TRM), which is based on fitting observations to a closed-form solution. Unfortunately, the conventional TRM assumes homogeneity. The objective of this study was to overcome this limitation and use tidal response to identify preferential flowpaths. Additionally, the procedure requires joint inversion with hydraulic test data. These provide further information on connectivity and are needed to resolve diffusivity into transmissivity and storage coefficient. Spatial variability is characterized using the regularized pilot points method. Actual application may be complicated by the need to filter tidal effects from the response to pumping and by the need to deal with different types of data, which we have addressed using maximum likelihood methods. Application to a contaminated artificial coastal fill leads to flowpaths that are consistent with the materials used during construction and to solute transport predictions that compare well with observations. We conclude that tidal response can be used to identify connectivity patterns. As such, it should be useful when designing measures to control sea water intrusion. [source]


Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 3-4 2003
Kanji Miyabe
Abstract Fundamental studies of the mass transfer kinetics are as essential as those of the retention equilibrium for a detailed understanding of the characteristics and the mechanisms of chromatographic separations. The acquisition of a large amount of reliable experimental data and of meaningful results is necessary for any further progress of our knowledge of kinetics. The main goal of this review is to provide information on the methods used to perform accurate measurements and on the data analysis procedures used for deriving the kinetic parameters characterizing mass transfer in HPLC. First, the general characteristics of several methods of determination of some kinetic parameters are briefly reviewed. Secondly, we give detailed explanations of the experimental conditions of the pulse on a plateau method (i.e., elution chromatography on a plateau of finite concentration or pulse response method) and of the data analysis procedures based on moment analysis. Thirdly, we explain some important requirements for the acquisition of appropriate experimental data and discuss corrections to be applied when deriving several kinetic parameters. Fourthly, we discuss the accuracy of the kinetic parameters derived from the pulse on a plateau method and from moment analysis. Finally, some results concerning the mass transfer kinetics in RPLC systems are demonstrated as examples. [source]


Stepwise Confidence Intervals for Monotone Dose,Response Studies

BIOMETRICS, Issue 3 2008
Jianan Peng
Summary In dose,response studies, one of the most important issues is the identification of the minimum effective dose (MED), where the MED is defined as the lowest dose such that the mean response is better than the mean response of a zero-dose control by a clinically significant difference. Dose,response curves are sometimes monotonic in nature. To find the MED, various authors have proposed step-down test procedures based on contrasts among the sample means. In this article, we improve upon the method of Marcus and Peritz (1976, Journal of the Royal Statistical Society, Series B38, 157,165) and implement the dose,response method of Hsu and Berger (1999, Journal of the American Statistical Association94, 468,482) to construct the lower confidence bound for the difference between the mean response of any nonzero-dose level and that of the control under the monotonicity assumption to identify the MED. The proposed method is illustrated by numerical examples, and simulation studies on power comparisons are presented. [source]


Photoelectrochemical Study of Corrosion Resisting Property of Cupronickel B10 in Simulated Cooling Water

CHINESE JOURNAL OF CHEMISTRY, Issue 2 2009
Qunjie XU
Abstract The corrosion behavior for cupronickel B10 electrode in simulated cooling water has been studied by using cyclic voltammetry, a photocurrent response method and electrochemical impedance spectroscopy (EIS). The cupronickel electrode shows a p-type photoresponse to positive and negative potential scan, which comes from Cu2O layer on its surface, but its iph,max is less than that in borax buffer solution. The corrosion resisting property of the cupronickel B10 electrode appeared worse with the increase in the concentrations of Cl,, SO42, and S2, ions, as well as with increasing pH. The rise in the temperature may result in a photoresponse changes from p-type to n-type, and the corrosion resisting property fell simultaneously. The results of the EIS measurement agree well with those obtained by a photoelectrochemical method. [source]