Home About us Contact | |||
Responses Capable (response + capable)
Selected AbstractsEnhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimodJOURNAL OF CUTANEOUS PATHOLOGY, Issue 4 2005Joerg Wenzel Introduction:, Imiquimod (AldaraÔ) is an immune response modifier approved for the topical treatment of external genital and perianal warts which can mediate regression of several cutaneous malignancies [basal cell carcinoma (BCC), Bowen's disease, actinic keratosis, and metastasis of malignant melanoma]. Recently, it was discovered that imiquimod acts through the toll-like receptor (TLR) 7. We hypothesize that TLR7-signaling strongly induces the production of interferon (IFN) ,, which is able to enhance Th1-mediated cellular antiviral and antitumor immunity. Patients and methods:, In the present study we analyzed the expression of MxA, a protein specifically induced by type I IFNs during topical imiquimod treatment in several patients suffering from different cutaneous malignancies (BCC, cutaneous metastasis of melanoma, and breast cancer), and characterized the inflammatory infiltrate, along with the expression of chemokine receptor CXCR3, by immunohistochemistry. Results:, Treatment with the TLR7-agonist imiquimod induced a significant lesional lymphocytic inflammation, associated with strong expression of MxA, indicating the induction of type I IFN signaling. The extent of lesional MxA staining closely correlated with the number of infiltrating T lymphocytes and the expression of the chemokine receptor CXCR3, characteristic for Th1-biased immune responses. Discussion:, Our in vivo results suggest an important role for TLR7-induced production of type I IFN, which links innate and adaptive immunity and promotes specific Th1-biased cellular immune response capable of eliminating cutaneous malignancies. MxA appears to be a valuable parameter to demonstrate IFN-type I expression in imiquimod therapy. [source] Preclinical development of hybrid cell vaccines for multiple myelomaEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 1 2007Renata Walewska Abstract Immunotherapy may provide alternative or supplementary treatment of multiple myeloma (MM). We propose that hybrid cells, formed by fusing professional antigen-presenting cells with malignant plasma cells, would induce immune responses capable of mediating tumour regression. The human B-lymphoblastoid cell line, HMy2, was fused in vitro with CD138+ bead-separated myeloma plasma cells from five patients with MM. The hybrid cell lines generated in these studies grew stably in tissue culture, and maintained their phenotypic and functional characteristics, providing self-renewing cell lines with potential for therapeutic vaccination. The hybrid cells stimulated allogeneic and autologous T-cell proliferative responses in vitro to a considerably greater degree than their respective parent myeloma plasma cells, and directly activated both CD4+ and CD8+ T-cell responses. The enhanced T-cell stimulation correlated with expression of CD80 on the hybrid cells, and was inhibited by CTLA4-Ig fusion protein. The hybrid cell lines expressed several tumour-associated antigens known to be expressed in myeloma. These data show that self-replicating cell lines with enhanced immunostimulatory properties and potential for therapeutic vaccination can be generated by in vitro fusion of ex vivo myeloma cells and B-lymphoblastoid cell lines. [source] Optimization of in vitro expansion of macaque CD4+ T cells using anti-CD3 and co-stimulation for autotransfusion therapyJOURNAL OF MEDICAL PRIMATOLOGY, Issue 4-5 2006Nattawat Onlamoon Abstract Background, Our laboratory has previously shown that adoptive transfer of in vitro -expanded autologous purified polyclonal CD4+ T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo. Methods, As CD4+ T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4+ T-cell expansion, survival and delineate the phenotype of these expanded CD4+ T cells to be linked to maximal clinical benefit. Results and Conclusions, The results showed that whereas anti-monkey CD3,/, was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3, cross reacting antibodies failed to induce proliferation of macaque CD4+ T cells. Among co-stimulatory signals, anti-CD28 stimulation was consistently superior to anti-4-1BB, CD27 or ICOS while the use of anti-CD154 failed to deliver a detectable proliferation signal. Increasing the relative anti-CD28 co-stimulatory signal relative to anti-CD3 provided a modest enhancement of expansion. Additional strategies for optimization included attempts to neutralize free radicals, enhancement of glucose uptake by T cells or addition of T-cell stimulatory cytokines. However, none of these strategies provided any detectable proliferative advantage. Addition of 10 autologous irradiated feeder cells/expanding T cell provided some enhancement of expansion; however, given the high numbers of T cell needed, this approach was deemed impractical and costly, and lower ratios of feeder to expanding T cells failed to provide such benefit. The most critical parameter for efficient expansion of purified CD4+ T cells from multiple monkeys was the optimization of space and culture conditions at culture inception. Finally, anti-CD3/28-expanded CD4+ T cells uniformly exhibited a central memory phenotype, absence of CCR5 expression, marked CXCR4 expression in vitro, low levels of caspase 3 but also of Bcl-2 expression. [source] Polyvalent DNA prime and envelope protein boost HIV-1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolateJOURNAL OF MEDICAL PRIMATOLOGY, Issue 5-6 2005Ranajit Pal Abstract:, Immunization of macaques with multivalent DNA encoding gp120 genes from HIV-1 subtypes A, B, C and E and a gag gene followed by boosting with homologous gp120 proteins elicited strong anti-gp120 antibodies capable of neutralizing homologous and to a lesser degree heterologous HIV-1 isolates. Both Env- and Gag-specific cell mediated immune (CMI) responses were detected in the immunized animals. Following rectal challenge with an SHIV isolate encoding HIV-1Ba-Lenv, plasma viremia in the infected immunized animals was significantly lower than that observed in the naïve animals. Further, one of six immunized animals was completely protected whereas all six naïve animals were infected. These results demonstrate that a vaccine based on priming with a polyvalent DNA vaccine from multiple HIV-1 subtypes followed by boosting with homologous Env proteins elicits anti-HIV-1 immune responses capable of controlling rectal transmission of SHIVBa-L. [source] |