Home About us Contact | |||
Respiratory Variation (respiratory + variation)
Selected AbstractsDoppler Superior Vena Cava Flow Evolution and Respiratory Variation in Superior Vena Cava SyndromeECHOCARDIOGRAPHY, Issue 4 2008Fa Qin Lv M.D. Background: Superior vena cava syndrome (SVCS) is a clinical expression of obstruction of blood flow through the superior vena cava. The patterns of the Doppler flow changes of superior vena cava (SVC), especially the respiratory effects on them have not yet been fully elucidated. This study was to examine SVC Doppler flow patterns and the respiratory effects on them in healthy subjects and patients with SVCS. Methods: The SVC Doppler flow patterns of 18 normal human subjects and 22 patients with SVCS were analyzed at initial diagnosis and were followed up every 2 months for at least 11 months. Results: Among the 22 patients, 5 patients with the tumor near the right atrium oppressing the inferior segment of the SVC had clear VR- and AR-waves, while in the other 17 patients the VR- and AR-waves disappeared or their outlines were vague. The respiratory variations of the S- and D-waves as a percentage change in inspiration compared to expiration in patient group were much lower than those in control group (S-wave: 1.67 ± 3.32% vs. 15.65 ± 16.15%, P = 0.0003; D-wave: 1.80 ± 1.12% vs. 23.55 ± 37%, P = 0.0087), which gradually became larger with treatment and showed no significant difference with those in control group after 7 months. Conclusions: The Doppler flows of the patients with SVCS correlate well with the images of CT scan of them. The respiratory variation of the S- and D-velocities could be used to evaluate the severity of SVC obstruction and its therapeutic effect. [source] Assessing normal pulse wave velocity in the proximal pulmonary arteries using transit time: A feasibility, repeatability, and observer reproducibility study by cardiovascular magnetic resonanceJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2007MRCP, William M. Bradlow BM Abstract Purpose To calculate pulse wave velocity (PWV) in the proximal pulmonary arteries (PAs) by cardiovascular magnetic resonance (CMR) using the transit-time method, and address respiratory variation, repeatability, and observer reproducibility. Materials and Methods A 1.9-msec interleaved phase velocity sequence was repeated three times consecutively in 10 normal subjects. Pulse wave (PW) arrival times (ATs) were determined for the main and branch PAs. The PWV was calculated by dividing the path length traveled by the difference in ATs. Respiratory variation was considered by comparing acquisitions with and without respiratory gating. Results For navigated data the mean PWVs for the left PA (LPA) and right PA (RPA) were 2.09 ± 0.64 m/second and 2.33 ± 0.44 m/second, respectively. For non-navigated data the mean PWVs for the LPA and RPA were 2.14 ± 0.41 m/second and 2.31 ± 0.49 m/second, respectively. No statistically significant difference was found between respiratory non-navigated data and navigated data. Repeated on-table measurements were consistent (LPA non-navigated P = 0.95, RPA non-navigated P = 0.91, LPA navigated P = 0.96, RPA navigated P = 0.51). The coefficients of variation (CVs) were 12.2% and 12.5% for intra- and interobserver assessments, respectively. Conclusion One can measure PWV in the proximal PAs using transit-time in a reproducible manner without respiratory gating. J. Magn. Reson. Imaging 2007;25:974,981. © 2007 Wiley-Liss, Inc. [source] Inferior Vena Cava Percentage Collapse During Respiration Is Affected by the Sampling Location: An Ultrasound Study in Healthy VolunteersACADEMIC EMERGENCY MEDICINE, Issue 1 2010David J. Wallace MD Abstract Objectives:, Physicians are unable to reliably determine intravascular volume status through the clinical examination. Respiratory variation in the diameter of the inferior vena cava (IVC) has been investigated as a noninvasive marker of intravascular volume status; however, there has been a lack of standardization across investigations. The authors evaluated three locations along the IVC to determine if there is clinical equivalence of the respiratory percent collapse at these sites. The objective of this study was to determine the importance of location when measuring the IVC diameter during quiet respiration. Methods:, Measurements of the IVC were obtained during quiet passive respiration in supine healthy volunteers. All images were recorded in B-mode, with cine-loop adjustments in real time, to ensure that maximum and minimum IVC dimensions were obtained. One-way repeated-measures analysis of variance (ANOVA) was used for comparison of IVC measurement sites. Results:, The mean (±SD) percentage collapse was 20% (±16%) at the level of the diaphragm, 30% (±21%) at the level of the hepatic vein inlet, and 35% (±22%) at the level of the left renal vein. ANOVA revealed a significant overall effect for location of measurement, with F(2,35) = 6.00 and p = 0.006. Contrasts showed that the diaphragm percentage collapse was significantly smaller than the hepatic (F(1,36) = 5.14; p = 0.03) or renal caval index (F(1,36) = 11.85; p = 0.002). Conclusions:, Measurements of respiratory variation in IVC collapse in healthy volunteers are equivalent at the level of the left renal vein and at 2 cm caudal to the hepatic vein inlet. Measurements taken at the junction of the right atrium and IVC are not equivalent to the other sites; clinicians should avoid measuring percentage collapse of the IVC at this location. ACADEMIC EMERGENCY MEDICINE 2010; 17:96,99 © 2009 by the Society for Academic Emergency Medicine [source] Assessing normal pulse wave velocity in the proximal pulmonary arteries using transit time: A feasibility, repeatability, and observer reproducibility study by cardiovascular magnetic resonanceJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2007MRCP, William M. Bradlow BM Abstract Purpose To calculate pulse wave velocity (PWV) in the proximal pulmonary arteries (PAs) by cardiovascular magnetic resonance (CMR) using the transit-time method, and address respiratory variation, repeatability, and observer reproducibility. Materials and Methods A 1.9-msec interleaved phase velocity sequence was repeated three times consecutively in 10 normal subjects. Pulse wave (PW) arrival times (ATs) were determined for the main and branch PAs. The PWV was calculated by dividing the path length traveled by the difference in ATs. Respiratory variation was considered by comparing acquisitions with and without respiratory gating. Results For navigated data the mean PWVs for the left PA (LPA) and right PA (RPA) were 2.09 ± 0.64 m/second and 2.33 ± 0.44 m/second, respectively. For non-navigated data the mean PWVs for the LPA and RPA were 2.14 ± 0.41 m/second and 2.31 ± 0.49 m/second, respectively. No statistically significant difference was found between respiratory non-navigated data and navigated data. Repeated on-table measurements were consistent (LPA non-navigated P = 0.95, RPA non-navigated P = 0.91, LPA navigated P = 0.96, RPA navigated P = 0.51). The coefficients of variation (CVs) were 12.2% and 12.5% for intra- and interobserver assessments, respectively. Conclusion One can measure PWV in the proximal PAs using transit-time in a reproducible manner without respiratory gating. J. Magn. Reson. Imaging 2007;25:974,981. © 2007 Wiley-Liss, Inc. [source] Inferior Vena Cava Percentage Collapse During Respiration Is Affected by the Sampling Location: An Ultrasound Study in Healthy VolunteersACADEMIC EMERGENCY MEDICINE, Issue 1 2010David J. Wallace MD Abstract Objectives:, Physicians are unable to reliably determine intravascular volume status through the clinical examination. Respiratory variation in the diameter of the inferior vena cava (IVC) has been investigated as a noninvasive marker of intravascular volume status; however, there has been a lack of standardization across investigations. The authors evaluated three locations along the IVC to determine if there is clinical equivalence of the respiratory percent collapse at these sites. The objective of this study was to determine the importance of location when measuring the IVC diameter during quiet respiration. Methods:, Measurements of the IVC were obtained during quiet passive respiration in supine healthy volunteers. All images were recorded in B-mode, with cine-loop adjustments in real time, to ensure that maximum and minimum IVC dimensions were obtained. One-way repeated-measures analysis of variance (ANOVA) was used for comparison of IVC measurement sites. Results:, The mean (±SD) percentage collapse was 20% (±16%) at the level of the diaphragm, 30% (±21%) at the level of the hepatic vein inlet, and 35% (±22%) at the level of the left renal vein. ANOVA revealed a significant overall effect for location of measurement, with F(2,35) = 6.00 and p = 0.006. Contrasts showed that the diaphragm percentage collapse was significantly smaller than the hepatic (F(1,36) = 5.14; p = 0.03) or renal caval index (F(1,36) = 11.85; p = 0.002). Conclusions:, Measurements of respiratory variation in IVC collapse in healthy volunteers are equivalent at the level of the left renal vein and at 2 cm caudal to the hepatic vein inlet. Measurements taken at the junction of the right atrium and IVC are not equivalent to the other sites; clinicians should avoid measuring percentage collapse of the IVC at this location. ACADEMIC EMERGENCY MEDICINE 2010; 17:96,99 © 2009 by the Society for Academic Emergency Medicine [source] Pleth variability index predicts hypotension during anesthesia inductionACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 5 2010M. TSUCHIYA Background: The pleth variability index (PVI) is a new algorithm used for automatic estimation of respiratory variations in pulse oximeter waveform amplitude, which might predict fluid responsiveness. Because anesthesia-induced hypotension may be partly related to patient volume status, we speculated that pre-anesthesia PVI would be able to identify high-risk patients for significant blood pressure decrease during anesthesia induction. Methods: We measured the PVI, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) in 76 adult healthy patients under light sedation with fentanyl to obtain pre-anesthesia control values. Anesthesia was induced with bolus administrations of 1.8 mg/kg propofol and 0.6 mg/kg rocuronium. During the 3-min period from the start of propofol administration, HR, SBP, DBP, and MAP were measured at 30-s intervals. Results: HR, SBP, DBP, and MAP were significantly decreased after propofol administration by 8.5%, 33%, 23%, and 26%, respectively, as compared with the pre-anesthesia control values. Linear regression analysis that compared pre-anesthesia PVI with the decrease in MAP yielded an r value of ,0.73. Decreases in SBP and DBP were moderately correlated with pre-anesthesia PVI, while HR was not. By classifying PVI >15 as positive, a MAP decrease >25 mmHg could be predicted, with sensitivity, specificity, positive predictive, and negative predictive values of 0.79, 0.71, 0.73, and 0.77, respectively. Conclusion: Pre-anesthesia PVI can predict a decrease in MAP during anesthesia induction with propofol. Its measurement may be useful to identify high-risk patients for developing severe hypotension during anesthesia induction. [source] |