Respiratory Rhythm (respiratory + rhythm)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Respiratory Rhythm

  • respiratory rhythm generation

  • Selected Abstracts


    Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo

    DEVELOPMENTAL NEUROBIOLOGY, Issue 12 2006
    C. Borday
    Abstract How regional patterning of the neural tube in vertebrate embryos may influence the emergence and the function of neural networks remains elusive. We have begun to address this issue in the embryonic mouse hindbrain by studying rhythmogenic properties of different neural tube segments. We have isolated pre- and post-otic hindbrain segments and spinal segments of the mouse neural tube, when they form at embryonic day (E) 9, and grafted them into the same positions in stage-matched chick hosts. Three days after grafting, in vitro recordings of the activity in the cranial nerves exiting the grafts indicate that a high frequency (HF) rhythm (order: 10 bursts/min) is generated in post-otic segments while more anterior pre-otic and more posterior spinal territories generate a low frequency (LF) rhythm (order: 1 burst/min). Comparison with homo-specific grafting of corresponding chick segments points to conservation in mouse and chick of the link between the patterning of activities and the axial origin of the hindbrain segment. This HF rhythm is reminiscent of the respiratory rhythm known to appear at E15 in mice. We also report on pre-/post-otic interactions. The pre-otic rhombomere 5 prevents the emergence of the HF rhythm at E12. Although the nature of the interaction with r5 remains obscure, we propose that ontogeny of fetal-like respiratory circuits relies on: (i) a selective developmental program enforcing HF rhythm generation, already set at E9 in post-otic segments, and (ii) trans-segmental interactions with pre-otic territories that may control the time when this rhythm appears. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem

    DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003
    Rachel E. Winmill
    Abstract This study tested the hypothesis that voltage-dependent, respiratory-related activity in vitro, inferred from changes in [K+]o, changes during development in the amphibian brainstem. Respiratory-related neural activity was recorded from cranial nerve roots in isolated brainstem,spinal cord preparations from 7 premetamorphic tadpoles and 10 adults. Changes in fictive gill/lung activity in tadpoles and buccal/lung activity in adults were examined during superfusion with artificial CSF (aCSF) with [K+]o ranging from 1 to 12 mM (4 mM control). In tadpoles, both fictive gill burst frequency (fgill) and lung burst frequency (flung) were significantly dependent upon [K+]o (r2 > 0.75; p < 0.001) from 1 to 10 mM K+, and there was a strong correlation between fgill and flung (r2 = 0.65; p < 0.001). When [K+]o was raised to 12 mM, there was a reversible abolition of fictive breathing. In adults, fictive buccal frequency (fbuccal), was significantly dependent on [K+]o (r2 = 0.47; p < 0.001), but [K+]o had no effect on flung (p > 0.2), and there was no significant correlation between fbuccal and flung. These data suggest that the neural networks driving gill and lung burst activity in tadpoles may be strongly voltage modulated. In adults, buccal activity, the proposed remnant of gill ventilation in adults, also appears to be voltage dependent, but is not correlated with lung burst activity. These results suggest that lung burst activity in amphibians may shift from a "voltage-dependent" state to a "voltage-independent" state during development. This is consistent with the hypothesis that the fundamental mechanisms generating respiratory rhythm in the amphibian brainstem change during development. We hypothesize that lung respiratory rhythm generation in amphibians undergoes a developmental change from a pacemaker to network-driven process. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 278,287, 2003 [source]


    Optical imaging of medullary ventral respiratory network during eupnea and gasping In situ

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
    Jeffrey T. Potts
    Abstract In severe hypoxia, respiratory rhythm is shifted from an eupneic, ramp-like motor pattern to gasping characterized by a decrementing pattern of phrenic motor activity. However, it is not known whether hypoxia reconfigures the spatiotemporal organization of the central respiratory rhythm generator. Using the in situ arterially perfused juvenile rat preparation, we investigated whether the shift from eupnea to gasping was associated with a reconfiguration of the spatiotemporal pattern of respiratory neuronal activity in the ventral medullary respiratory network. Optical images of medullary respiratory network activity were obtained from male rats (4,6 weeks of age). Part of the medullary network was stained with a voltage-sensitive dye (di-2 ANEPEQ) centred both within, and adjacent to, the pre-Bötzinger complex (Pre-BötC). During eupnea, optical signals initially increased prior to the onset of phrenic activity and progressively intensified during the inspiratory phase peaking at the end of inspiration. During early expiration, fluorescence was also detected and slowly declined throughout this phase. In contrast, hypoxia shifted the respiratory motor pattern from eupnea to gasping and optical signals were restricted to inspiration only. Areas active during gasping showed fluorescence that was more intensive and covered a larger region of the rostral ventrolateral medulla compared to eupnea. Regions exhibiting peak inspiratory fluorescence did not coincide spatially during eupnea and gasping. Moreover, there was a recruitment of additional medullary regions during gasping that were not active during eupnea. These results provide novel evidence that the shift in respiratory motor pattern from eupnea to gasping appears to be associated with a reconfiguration of the central respiratory rhythm generator characterized by changes in its spatiotemporal organization. [source]


    Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005
    J. C. Viemari
    Abstract Although a normal respiratory rhythm is vital at birth, little is known about the genetic factors controlling the prenatal maturation of the respiratory network in mammals. In Phox2a mutant mice, which do not express A6 neurons, we previously hypothesized that the release of endogenous norepinephrine by A6 neurons is required for a normal respiratory rhythm to occur at birth. Here we investigated the role of the Ret gene, which encodes a transmembrane tyrosine kinase receptor, in the maturation of norepinephrine and respiratory systems. As Ret -null mutants (Ret,/,) did not survive after birth, our experiments were performed in wild-type (wt) and Ret,/, fetuses exteriorized from pregnant heterozygous mice at gestational day 18. First, in wt fetuses, quantitative in situ hybridization revealed high levels of Ret transcripts in the pontine A5 and A6 areas. Second, in Ret,/, fetuses, high-pressure liquid chromatography showed significantly reduced norepinephrine contents in the pons but not the medulla. Third, tyrosine hydroxylase immunocytochemistry revealed a significantly reduced number of pontine A5 and A6 neurons but not medullary norepinephrine neurons in Ret,/, fetuses. Finally, electrophysiological and pharmacological experiments performed on brainstem ,en bloc' preparations demonstrated impaired resting respiratory activity and abnormal responses to central hypoxia and norepinephrine application in Ret,/, fetuses. To conclude, our results show that Ret gene contributes to the prenatal maturation of A6 and A5 neurons and respiratory system. They support the hypothesis that the normal maturation of the respiratory network requires afferent activity corresponding to the A6 excitatory and A5 inhibitory input balance. [source]


    Breathing rhythms and emotions

    EXPERIMENTAL PHYSIOLOGY, Issue 9 2008
    Ikuo Homma
    Respiration is primarily regulated for metabolic and homeostatic purposes in the brainstem. However, breathing can also change in response to changes in emotions, such as sadness, happiness, anxiety or fear. Final respiratory output is influenced by a complex interaction between the brainstem and higher centres, including the limbic system and cortical structures. Respiration is important in maintaining physiological homeostasis and co-exists with emotions. In this review, we focus on the relationship between respiration and emotions by discussing previous animal and human studies, including studies of olfactory function in relation to respiration and the piriform,amygdala in relation to respiration. In particular, we discuss oscillations of piriform,amygdala complex activity and respiratory rhythm. [source]


    Breath-holding and its breakpoint

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2006
    M. J. Parkes
    This article reviews the basic properties of breath-holding in humans and the possible causes of the breath at breakpoint. The simplest objective measure of breath-holding is its duration, but even this is highly variable. Breath-holding is a voluntary act, but normal subjects appear unable to breath-hold to unconsciousness. A powerful involuntary mechanism normally overrides voluntary breath-holding and causes the breath that defines the breakpoint. The occurrence of the breakpoint breath does not appear to be caused solely by a mechanism involving lung or chest shrinkage, partial pressures of blood gases or the carotid arterial chemoreceptors. This is despite the well-known properties of breath-hold duration being prolonged by large lung inflations, hyperoxia and hypocapnia and being shortened by the converse manoeuvres and by increased metabolic rate. Breath-holding has, however, two much less well-known but important properties. First, the central respiratory rhythm appears to continue throughout breath-holding. Humans cannot therefore stop their central respiratory rhythm voluntarily. Instead, they merely suppress expression of their central respiratory rhythm and voluntarily ,hold' the chest at a chosen volume, possibly assisted by some tonic diaphragm activity. Second, breath-hold duration is prolonged by bilateral paralysis of the phrenic or vagus nerves. Possibly the contribution to the breakpoint from stimulation of diaphragm muscle chemoreceptors is greater than has previously been considered. At present there is no simple explanation for the breakpoint that encompasses all these properties. [source]


    Astrocytic calcium signals induced by neuromodulators via functional metabotropic receptors in the ventral respiratory group of neonatal mice

    GLIA, Issue 8 2009
    Kai Härtel
    Abstract A controlled, periodic exchange of air between lungs and atmosphere requires a neuronal rhythm generated by a network of neurons in the ventral respiratory group (VRG) of the brainstem. Glial cells, e.g. astrocytes, have been shown to be supportive in stabilizing this neuronal activity in the central nervous system during development. In addition, a variety of neuromodulators including serotonin (5-HT), Substance P (SP), and thyrotropin-releasing hormone (TRH) stimulate respiratory neurons directly. If astrocytes in the VRG, like their neuronal neighbors, are also directly stimulated by neuromodulators, they might indirectly affect the respiratory neurons and consequently the respiratory rhythm. In the present study, we provide support for this concept by demonstrating expression of NK1-R, TRH-R, and 5-HT2 -R in astrocytes of the VRG with immunohistochemistry. Additionally, we showed that the external application of the neuromodulators 5-HT, SP, and TRH activate calcium transients in VRG astrocytes. Consequently, we postulate that in the VRG of the neonatal mouse, neuromodulation by SP, TRH, and serotonin also involves astrocytic calcium signaling. © 2008 Wiley-Liss, Inc. [source]


    Hypoxia-sensing properties of the newborn rat ventral medullary surface in vitro

    THE JOURNAL OF PHYSIOLOGY, Issue 1 2006
    N. Voituron
    The ventral medullary surface (VMS) is a region known to exert a respiratory stimulant effect during hypercapnia. Several studies have suggested its involvement in the central inhibition of respiratory rhythm caused by hypoxia. We studied brainstem,spinal cord preparations isolated from newborn rats transiently superfused with a very low O2 medium, causing reversible respiratory depression, to characterize the participation of the VMS in hypoxic respiratory adaptation. In the presence of 0.8 mm Ca2+, very low O2 medium induced an increase in c-fos expression throughout the VMS. The reduction of synaptic transmission and blockade of the respiratory drive by 0.2 mm Ca2+,1.6 mm Mg2+ abolished c-fos expression in the medial VMS (at the lateral edge of the pyramidal tract) but not in the perifacial retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) VMS, suggesting the existence of perifacial RTN/pFRG hypoxia-sensing neurons. In the presence of Ca2+ (0.8 mm), lesioning experiments suggested a physiological difference in perifacial RTN/pFRG VMS between the lateral VMS (beneath the ventrolateral part of the facial nucleus) and the middle VMS (beneath the ventromedial part of the facial nucleus), at least in newborn rats. The lateral VMS lesion, corresponding principally to the most rostral part of the pFRG, produced hypoxia-induced stimulation, whereas the middle VMS lesion, corresponding to the main part of the RTN, abolished hypoxic excitation. This may involve relay via the medial VMS, which is thought to be the parapyramidal group. [source]


    Panic disorder: from respiration to the homeostatic brain

    ACTA NEUROPSYCHIATRICA, Issue 2 2004
    Giampaolo Perna
    There is some experimental evidence to support the existence of a connection between panic and respiration. However, only recent studies investigating the complexity of respiratory physiology have revealed consistent irregularities in respiratory pattern, suggesting that these abnormalities might be a vulnerability factor to panic attacks. The source of the high irregularity observed, together with unpleasant respiratory sensations in patients with panic disorder (PD), is still unclear and different underlying mechanisms might be hypothesized. It could be the result of compensatory responses to abnormal respiratory inputs or an intrinsic deranged activity in the brainstem network shaping the respiratory rhythm. Moreover, since basic physiological functions in the organism are strictly interrelated, with reciprocal modulations and abnormalities in cardiac and balance system function having been described in PD, the respiratory findings might arise from perturbations of these other basic systems or a more general dysfunction of the homeostatic brain. Phylogenetically ancient brain circuits process physiological perceptions/sensations linked to homeostatic functions, such as respiration, and the parabrachial nucleus might filter and integrate interoceptive information from the basic homeostatic functions. These physiological processes take place continuously and subconsciously and only occasionally do they pervade the conscious awareness as ,primal emotions'. Panic attacks could be the expression of primal emotion arising from an abnormal modulation of the respiratory/homeostatic functions. [source]


    Pattern Formation And Rhythm Generation In The Ventral Respiratory Group

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2000
    Donald R McCrimmon
    SUMMARY 1. There is increasing evidence that the kernel of the rhythm-generating circuitry for breathing is located within a discrete subregion of a column of respiratory neurons within the ventrolateral medulla referred to as the ventral respiratory group (VRG). It is less clear how this rhythm is transformed into the precise patterns appearing on the varied motor outflows. 2. Two different approaches were used to test whether subregions of the VRG have distinct roles in rhythm or pattern generation. In one, clusters of VRG neurons were activated or inactivated by pressure injection of small volumes of neuroactive agents to activate or inactivate groups of respiratory neurons and the resulting effects on respiratory rhythm and pattern were determined. The underlying assumption was that if rhythm and pattern are generated by neurons in different VRG subregions, then we should be able to identify regions where activation of neurons predominantly alters rhythm with little effect on pattern and other regions where pattern is altered with little effect on rhythm. 3. Based on the pattern of phrenic nerve responses to injection of an excitatory amino acid (DL -homocysteate), the VRG was divided into four subdivisions arranged along the rostrocaudal axis. Injections into the three rostral regions elicited changes in both respiratory rhythm and pattern. From rostral to caudal the regions included: (i) a rostral bradypnoea region, roughly associated with the Bötzinger complex; (ii) a dysrhythmia/tachypnoea area, roughly associated with the pre-Bötzinger complex (PBC); (iii) a second caudal bradypnoea area; and, most caudally, (iv) a region from which no detectable change in respiratory motor output was elicited. 4. In a second approach, the effect of unilateral lesions of one subregion, the PBC, on the Breuer,Hering reflex changes in rhythm were determined. Activation of this reflex by lung inflation shortens inspiration and lengthens expiration (TE). 5. Unilateral lesions in the PBC attenuated the reflex lengthening of TE, but did not change baseline respiratory rhythm. 6. These findings are consistent with the concept that the VRG is not functionally homogeneous, but consists of rostrocaudally arranged subregions. Neurons within the so-called PBC appear to have a dominant role in rhythm generation. Nevertheless, neurons within other subregions contribute to both rhythm and pattern generation. Thus, at least at an anatomical level resolvable by pressure injection, there appears to be a significant overlap in the circuitry generating respiratory rhythm and pattern. [source]