Home About us Contact | |||
Resource Quality (resource + quality)
Selected AbstractsResource quality and stoichiometric constraints on stream ecosystem functioningFRESHWATER BIOLOGY, Issue 5 2009SALLY HLADYZ Summary 1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf-litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf-litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf-shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate-mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate-mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora. [source] Development, growth, and egg production of Ageneotettix deorum (Orthoptera: Acrididae) in response to spider predation risk and elevated resource qualityECOLOGICAL ENTOMOLOGY, Issue 1 2004Bradford. Abstract., 1.,Predation risk to insects is often size- or stage-selective and usually decreases as prey grow. Any factor, such as food quality, that accelerates developmental and growth rates is likely to reduce the period over which prey are susceptible to size-dependent predation. 2.,Using field experiments, several hypotheses that assess growth, development, and egg production rates of the rangeland grasshopper Ageneotettix deorum (Scudder) were tested in response to combinations of food quality and predation risk from wolf spiders to investigate performance variation manifested through a behaviourally mediated path affecting food ingestion rates. 3.,Grasshoppers with nutritionally superior food completed development , 8,18% faster and grew 15,45% larger in the absence of spiders, in comparison with those subjected to low quality food exposed to spider predators. Growth and development did not differ for grasshoppers feeding on high quality food when predators were present in comparison with lower quality food unimpeded by predators. Responses indicated a compensatory relationship between resource quality and predation risk. 4.,Surviving grasshoppers produced fewer eggs compared with individuals not exposed to spiders. Because no differences were found in daily egg production rate regardless of predation treatment, lower egg production was attributed to delayed age of first reproduction. Results compare favourably with responses observed in natural populations. 5.,Risk of predation from spiders greatly reduced growth, development, and ultimately egg production. Increased food quality counteracts the impact of predation risk on grasshoppers through compensatory responses, suggesting that bottom-up factors mediate effects of spiders. [source] Quality matters: resource quality for hosts and the timing of epidemicsECOLOGY LETTERS, Issue 2 2009Spencer R. Hall Abstract Epidemiologists increasingly realize that species interactions (e.g. selective predation) can determine when epidemics start and end. We hypothesize here that resource quality can also strongly influence disease dynamics: epidemics can be inhibited when resource quality for hosts is too poor and too good. In three lakes, resource quality for the zooplankton host (Daphnia dentifera) was poor when fungal epidemics (Metschnikowia bicuspidata) commenced and increased as epidemics waned. Experiments using variation in algal food showed that resource quality had conflicting effects on underlying epidemiology: high-quality food induced large production of infective propagules (spores) and high birth rate but also reduced transmission. A model then illustrated how these underlying correlations can inhibit the start of epidemics (when spore production/birth rate are too low) but also catalyse their end (when transmission becomes too low). This resource quality mechanism is likely to interface with other ones controlling disease dynamics and warrants closer evaluation. [source] Does Host Value Influence Female Aggressiveness, Contest Outcome and Fitness Gain in Parasitoids?ETHOLOGY, Issue 4 2007Marlene Goubault Intraspecific competition for resources is common in animals and may lead to physical contests. Contest outcomes and aggressiveness can be influenced by the resource holding potential of contestants but also by their perception of the resource value (RV). Competitors may assess resource quality directly (real RV) but may also estimate it according to their physiological status and their experience of the habitat quality (subjective RV). In this article, we studied contests between females of the solitary parasitoid Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae) when exploiting simultaneously a host, a Delia radicum L. (Diptera: Anthomyiidae) pupa. We tested the effect of factors modifying host value on the occurrence of agonistic behaviours, contest outcomes and host exploitation. The factors tested were: the quality of the previous habitat experienced by females, female egg load, host parasitism status and the stage reached by the owner female in her behavioural oviposition sequence. Females successfully protected their host against intruders during its exploitation, but not after oviposition, and their aggressiveness did not seem to be influenced by their perception of the RV. The fact that the host is subsequently parasitized by the opponent females appears to mainly depend on the host selectiveness of females. [source] Adjustment of Parental Investment in the Dung Beetle Onthophagus atripennis (Col., Scarabaeidae)ETHOLOGY, Issue 12 2006Shigeki Kishi If parents can invest resources optimally per offspring, they should adjust the amount of investment in an offspring according to environmental heterogeneity. Many studies have demonstrated changes in egg size or the amount of resource supplied in response to environmental heterogeneity. However, it remains unclear whether parents simply know the resource type a priori or can assess resource quality and adjust the quantity of investment accordingly. We examined the parental capability to adjust the amount of investment per offspring by providing Onthophagus atripennis dung beetle parents with one of three dung types of different quality: monkey dung (high quality), cow dung (low quality), or a mixture of monkey and cow dung (medium quality). The beetle parents cooperatively produce dung brood masses each with one egg under the ground. The size of a brood mass, on which a larva can only feed until adult, represents a large part of the amount of investment. Parents produced a greater number of smaller brood masses given high-quality resource, while they compensated for low quality of the resource by providing a larger amount of the resource, at the cost of offspring number. However, despite this compensation in the amount of food, offspring raised on low-quality food was still smaller than offspring raised on high-quality food. Thus, O. atripennis parents assessed resource quality partly and adjusted the amount of resource provided for their offspring. [source] Resource quality and stoichiometric constraints on stream ecosystem functioningFRESHWATER BIOLOGY, Issue 5 2009SALLY HLADYZ Summary 1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf-litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf-litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf-shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate-mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate-mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora. [source] Pond canopy cover: a resource gradient for anuran larvaeFRESHWATER BIOLOGY, Issue 3 2006LUIS SCHIESARI Summary 1.,The gradient in pond canopy cover strongly influences freshwater species distributions. This study tested the effects of canopy cover on the performance of two species of larval anurans, a canopy cover generalist (Rana sylvatica, the wood frog) and an open-canopy specialist (R. pipiens, the leopard frog), and tested which factors co-varying with canopy cover mediate these effects. 2.,A field transplant experiment demonstrated that canopy cover had negative performance effects on both species. However, leopard frogs, which grow faster than wood frogs in open-canopy ponds, were more strongly affected by closed-canopy pond conditions. 3.,Closed-canopy ponds had lower temperature, dissolved oxygen (DO), and food nutritional quality as indicated by carbon-to-nitrogen ratio (C : N) analysis of field-sampled food types, and of gut contents of transplanted larvae. 4.,Laboratory experiments demonstrated that higher temperature and food quality but not DO substantially increased larval growth. However, only food quality increased growth rates of leopard frogs more than wood frogs. 5.,The strong correlation of growth rates to gut content C : N in the field, and the similarity of growth curves as a function of resource quality in the field and laboratory, strongly suggest that resources are of primary importance in mediating intraspecific, and especially interspecific differences in performance across the canopy cover gradient. [source] Interspecific carbon exchange and cost of interactions between basidiomycete mycelia in soil and woodFUNCTIONAL ECOLOGY, Issue 2 2002J. M. Wells Summary 1.,The outcome of interactions between wood decay basidiomycete fungi is affected by the size of territory held by a mycelium. We investigated the outcomes of interactions between the cord-forming saprotrophs Phanerochaete velutina (DC: Pers.) Parm., Phallus impudicus (L.) Pers. and Hypholoma fasciculare (Huds: Fr) Kumner over 152,155 days, determined as ability to capture or share territory in soil and wood, in terms of decay partitioning and the carbon cost of interactions. 2.,The outcome of interactions in wood alone differed from those in which the fungi competed for an opponents' inoculum in soil microcosms. Competitive ability (the ability to capture or co-occupy an opponent's inoculum) varied according to species and inoculum age. In wood block pairings in the absence of soil there was evidence that P. velutina opportunistically utilized C previously mobilized within an opponent's inoculum. 3.,In soil systems, short-term (28-day) respiratory losses of preloaded 14C (supplied as glucose) indicated that interaction could have a substantial C cost, depending on the resource quality of the opponents' inocula. Phallus impudicus inocula accumulated 14C from opponents' mycelia during ,deadlock' interactions, although reciprocal interspecific 14C transfer was not observed. 4.,Saprotrophic cord-forming basidiomycetes are considered to be highly conservative of acquired nutrients, representing a significant nutrient reservoir in woodland ecosytems. Here we demonstrate that a potential major pathway for nutrient mineralization by this group is nutrient loss during competitive interactions in soil. [source] Habitat heterogeneity influences connectivity in a spatially structured pest populationJOURNAL OF APPLIED ECOLOGY, Issue 2 2006G. S. HAMILTON Summary 1Patterns of connectivity influence pest population system dynamics, and it is essential to consider connectivity when planning effective management strategies. Traditional connectivity models often consider populations embedded in a matrix of unsuitable habitat. This approach is unlikely to be applicable to those pest species that can utilize most of the landscape in which they live. There is therefore a need for a simple and flexible tool to assess connectivity in such systems. 2In this study, we developed a new model in which contiguous resource patches that differ in quality, and landscape elements that impede dispersal, impact on connectivity within a population system. The model was applied to a wild rabbit population system, a well-studied pest species in Australia. An independent population genetic data set was used to validate the model. 3There was a highly significant association between pairwise population connectivity and the genetic data (Mantel test, r=,0·502, P= 0·002). As predicted, two populations that showed very low connectivity were strongly isolated genetically. These sites appeared to be substantially isolated because of forests, which acted to impede rabbit dispersal. When these sites were excluded from analysis, connectivity indices again explained the pattern of genetic data (Mantel test, r=,0·46, P= 0·037). This showed that both spatial variation in resource quality and forests influenced connectivity in this system. Sensitivity analyses confirmed that the distribution and extent of forests was important in limiting connectivity to some sites. The model was relatively robust to changes in population parameters. 4Synthesis and applications. Connectivity among wild rabbit populations in this system was strongly influenced by habitat heterogeneity, rather than factors such as geographical distance or major landscape elements such as rivers, both of which are traditionally considered to influence system dynamics. This may have substantial implications for many pest systems, and suggests that the impact of habitat heterogeneity on connectivity should be considered when planning efficient management strategies. [source] Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters?OIKOS, Issue 2 2003Victoria C. Smith Differences in resource quality between litter species have been postulated to explain why litter-mixtures may decompose at a different rate to that which would be predicted from single species litters (termed ,non-additive effects'). In particular, positive, non-additive effects of litter-mixing on decomposition have been explained by differences in initial nitrogen concentration between litter species. This interpretation is confounded because litter species that differ in nitrogen content also differ by a number of other resource quality attributes. Thus, to investigate whether initial nitrogen concentration does account for positive, non-additive effects of litter-mixing, we mixed grass litters that differed in initial nitrogen concentration but not species or structural plant part identity, and then followed mass loss from the litter-mixes over time. We used the litterbag technique and three grass species for which a gradient of four distinct initial nitrogen concentrations had been generated. We produced all no- to four-mix compositions of litter qualities for each species. Litter from different species was never mixed. Contrary to what would be predicted, we found that when litters of the same species but with different initial nitrogen concentrations were mixed, that negative, non-additive effects on decomposition were generally observed. In addition, we found that once mixed, increasing litter quality richness from two to four mixtures had no significant, non-additive effect on decomposition. Litter quality composition explained little of the experimental variation when compared to litter quality richness, and different compositions generally behaved in the same manner. Our findings challenge the commonly held assumption that differences in nitrogen concentration between plant species are responsible for positive, non-additive effects of litter-mixing on decomposition. [source] Circadian variation in resource quality: leaf water content and its relevance to eastern grey kangaroo Macropus giganteus and common wombat Vombatus ursinusAUSTRAL ECOLOGY, Issue 2 2010PETER J. JARMAN Abstract Green leaves of six grass species in temperate Australia showed considerable circadian variation (especially in summer) in water content, which peaked late in the night and fell from sunrise to an afternoon minimum. In summer, water content of a set of ,wetter' species (Axonopus affinis, Pennisetum clandestinum and Paspalum dilatatum) was consistently higher and varied less profoundly through the 24 h than that of a ,drier' set (Imperata cylindrica, Poa labillardieri and Themeda triandra). Hour-to-hour and day-to-day variation in leaf water content of P. dilatatum in summer partly but imperfectly reflected ambient temperature. Recognizing the risks for herbivores of visiting water sources, we considered leaf water content as a source of free water for leaf-grazing herbivores, eastern grey kangaroos Macropus giganteus and common wombats Vombatus ursinus. Using known field metabolic rates, energy requirements and digestive efficiencies, we calculated these two species' free-water intakes when satisfying their energy needs with these grasses but distributing their grazing in different schedules. Both species would obtain more free water by their observed foraging schedules than by random or daytime-only schedules. We calculated that the measured grasses could satisfy the water requirements of wombats but not always those of kangaroos, who would need to drink when forage water content was less than about 70%. Water content of grass leaf could rise above and fall below this value within a day, creating some scope for kangaroos to manage their need to visit water by adjusting foraging schedules or choice of grass species. In future studies, circadian variation in leaf water content should be considered as a factor (together with their thermal physiology) driving herbivores' activity scheduling, and affecting their dietary selection. [source] |