Resorption Depth (resorption + depth)

Distribution by Scientific Domains


Selected Abstracts


A Three-Dimensional Simulation of Age-Related Remodeling in Trabecular Bone,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2001
J. C. Van Der Linden
Abstract After peak bone mass has been reached, the bone remodeling process results in a decrease in bone mass and strength. The formation deficit, the deficit of bone formation compared with previous resorption, results in bone loss. Moreover, trabeculae disconnected by resorption cavities probably are not repaired. The contributions of these mechanisms to the total bone loss are unclear. To investigate these contributions and the concomitant changes in trabecular architecture and mechanical properties, we made a computer simulation model of bone remodeling using microcomputed tomography (micro-CT) scans of human vertebral trabecular bone specimens. Up to 50 years of physiological remodeling were simulated. Resorption cavities were created and refilled 3 months later. These cavities were not refilled completely, to simulate the formation deficit. Disconnected trabeculae were not repaired; loose fragments generated during the simulation were removed. Resorption depth, formation deficit, and remodeling space were based on biological data. The rate of bone loss varied between 0.3% and 1.1% per year. Stiffness anisotropy increased, and morphological anisotropy (mean intercept length [MIL]) was almost unaffected. Connectivity density increased or decreased, depending on the remodeling parameters. The formation deficit accounted for 69,95%, disconnected trabeculae for 1,21%, and loose fragments for 1,17% of the bone loss. Increasing formation deficit from 1.8% to 5.4% tripled bone loss but only doubled the decrease in stiffness. Increasing resorption depth from 28 to 56 ,m slightly increased bone loss but drastically decreased stiffness. Decreasing the formation deficit helps to prevent bone loss, but reducing resorption depth is more effective in preventing loss of mechanical stiffness. [source]


Colocalization of Intracellular Osteopontin With CD44 Is Associated With Migration, Cell Fusion, and Resorption in Osteoclasts,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2002
K. Suzuki
Abstract Although osteopontin (OPN) is recognized generally as a secreted protein, an intracellular form of osteopontin (iOPN), associated with the CD44 complex, has been identified in migrating fibroblastic cells. Because both OPN and CD44 are expressed at high levels in osteoclasts, we have used double immunofluorescence analysis and confocal microscopy to determine whether colocalization of these proteins has functional significance in the formation and activity of osteoclasts. Analysis of rat bone marrow-derived osteoclasts revealed strong surface staining for CD44 and ,1- and ,3-integrins, whereas little or no staining for OPN or bone sialoprotein (BSP) was observed in nonpermeabilized cells. In permeabilized perfusion osteoclasts and multinucleated osteoclasts, staining for OPN and CD44 was prominent in cell processes, including filopodia and pseudopodia. Confocal microscopy revealed a high degree of colocalization of OPN with CD44 in motile osteoclasts. In cells treated with cycloheximide (CHX), perinuclear staining for OPN and BSP was lost, but iOPN staining was retained within cell processes. In osteoclasts generated from the OPN-null and CD44-null mice, cell spreading and protrusion of pseudopodia were reduced and cell fusion was impaired. Moreover, osteoclast motility and resorptive activity were significantly compromised. Although the area resorbed by OPN-null osteoclasts could be rescued partially by exogenous OPN, the resorption depth was not affected. These studies have identified an intracellular form of OPN, colocalizing with CD44 in cell processes, that appears to function in the formation and activity of osteoclasts. [source]


A Three-Dimensional Simulation of Age-Related Remodeling in Trabecular Bone,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2001
J. C. Van Der Linden
Abstract After peak bone mass has been reached, the bone remodeling process results in a decrease in bone mass and strength. The formation deficit, the deficit of bone formation compared with previous resorption, results in bone loss. Moreover, trabeculae disconnected by resorption cavities probably are not repaired. The contributions of these mechanisms to the total bone loss are unclear. To investigate these contributions and the concomitant changes in trabecular architecture and mechanical properties, we made a computer simulation model of bone remodeling using microcomputed tomography (micro-CT) scans of human vertebral trabecular bone specimens. Up to 50 years of physiological remodeling were simulated. Resorption cavities were created and refilled 3 months later. These cavities were not refilled completely, to simulate the formation deficit. Disconnected trabeculae were not repaired; loose fragments generated during the simulation were removed. Resorption depth, formation deficit, and remodeling space were based on biological data. The rate of bone loss varied between 0.3% and 1.1% per year. Stiffness anisotropy increased, and morphological anisotropy (mean intercept length [MIL]) was almost unaffected. Connectivity density increased or decreased, depending on the remodeling parameters. The formation deficit accounted for 69,95%, disconnected trabeculae for 1,21%, and loose fragments for 1,17% of the bone loss. Increasing formation deficit from 1.8% to 5.4% tripled bone loss but only doubled the decrease in stiffness. Increasing resorption depth from 28 to 56 ,m slightly increased bone loss but drastically decreased stiffness. Decreasing the formation deficit helps to prevent bone loss, but reducing resorption depth is more effective in preventing loss of mechanical stiffness. [source]


Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis

CLINICAL ORAL IMPLANTS RESEARCH, Issue 4 2004
Eriko Kitamura
Abstract Objectives: Although bone loss around implants is reported as a complication when it progresses uncontrolled, resorption does not always lead to implant loss, but may be the result of biomechanical adaptation to stress. To verify this hypothesis, a three-dimensional finite element analysis was performed and the influence of marginal bone resorption amount and shape on stress in the bone and implant was investigated. Material and methods: A total of nine bone models with an implant were created: a non-resorption (Base) model and eight variations, in which three different resorption depths were combined with pure vertical or conical (vertical,horizontal) resorption. Axial and buccolingual forces were applied independently to the occlusal node at the center of the superstructure. Results: Regardless of load direction, bone stresses were higher in the pure vertical resorption (A) models than in the Base model, and increased with resorption depth. However, cortical bone stress was much lower in the conical resorption models than in both the Base and A models of the same resorption depth. An opposite tendency was observed in the cancellous bone under buccolingual load. Under buccolingual load, highest stress in the implant increased linearly with the resorption depth for all the models and its location approached the void existing below the abutment screw. Conclusions: The results of this analysis suggest that a certain amount of conical resorption may be the result of biomechanical adaptation of bone to stress. However, as bone resorption progresses, the increasing stresses in the cancellous bone and implant under lateral load may result in implant failure. Résumé Bien que la perte osseuse autour des implants soit considérée comme une complication quand elle progresse de manière incontrôlée, la résoption ne se termine pas toujours par la perte de l'implant, mais peut être le résultat de l'adaptation biomécanique au stress. Pour vérifier cette hypothèse, une analyse d'éléments finis en trois dimensions a été effectuée et l'influence de l'aspect et de la quantité de résorption osseuse marginale au stress dans l'os et l'implant a été analysée. Neuf modèles osseux avec un implant ont été créés : un modèle (Base) sans résorption et huit variations dans lesquelles trois profondeurs de résorption différentes ont été combinées avec des résorptions verticales ou coniques (verticale-horizontale). Des forces axiales et vestibulo-linguales ont été appliquées de manière indépendante en occlusal au centre de la superstructure. Quelle que soit la direction de la charge, les stress osseux étaient plus importants dans la résorption verticale pure (A) que dans le modèle de base et augmentaient avec la profondeur de résorption. Cependant, le stress osseux cortical était beaucoup plus faible dans les modèles à résorption conique que dans les modèles Base et A de même profondeur de résorption. Une tendance opposée était observée dans l'os spongieux sous charge vestibulo-linguale. Sous charge vestibulo-linguale, le stress le plus important dans l'implant augmentait linéairement avec la profondeur de résorption pour tous les modèles et sa localisation approchait l'espace existant en-dessous du pilier. Les résultats de cette analyse suggèrent qu'une certaine quantité de résorption conique pourrait être le résultat d'une adaptation biomécanique au stress osseux. Cependant, quand la résorption osseuse progresse les stress s'amplifiant dans l'os spongieux et au niveau de l'implant sous une force latérale peuvent résulter en un échec implantaire. Zusammenfassung Ziel: Auch wenn ein Knochenverlust um Implantate, der unkontrolliert fortschreitet, als Komplikation beschrieben wird, führen solche Resorptionen nicht gezwungenermassen zu einem Implantatverlust. Sie könnten aber Ausdruck einer biomechanischen Adaptation auf die Belastungen sein. Um diese Hypothese zu überprüfen, führte man eine dreidimensionale "Finite-Element"-Analyse durch. Man untersuchte die Zusammenhänge von Ausmass und Form der marginalen Knochenresorption und den entstehenden Kräften im Knochen und Implantat. Material und Methode: Die Arbeitsgrundlage waren 9 Modelle mit je einem Implantat: eines diente als Kontrolle (ohne Resorptionserscheinungen), die anderen acht zeigten drei verschiedene Resortionstiefen in Kombination mit rein vertikalen oder konischen (vertiko-horizontal) Defektformen. Dann liess man, unabhängig von der Okklusionsgestaltung, axiale und buccolinguale Kräfte auf die Mitte der Suprastruktur auftreffen. Resultate: Unabhängig von der Belastungsrichtung war die Knochenbelastung bei den rein vertikalen Resorptionsmodellen (A) grösser als beim Kontrollmodell und sie nahmen mit der Tiefe der Resorption zu. Die Belastung im kortikalen Knochen war aber in den Modellen mit konischen Resorptionen viel geringer als beim Kontrollmodell und den A-Modellen mit denselben Resorptionstiefen. Eine genau umgekehrte Tendenz konnte man im spongiösen Knochen unter buccolingualer Belastung feststellen.Bei einer buccolingualen Belastung nahm die Belastungsspitze beim Implantat bei allen Modellen linear mit der Resorptionstiefe zu und der Ort dieser Belastungsspitze lag im Bereich des Leerraumes genau unterhalb der Schraube des Sekundärteils. Zusammenfassung: Die Resultate dieser Analyse lassen vermuten, dass die konische Resorption bis zu einem gewissen Ausmass das Resultat einer biomechanischen Adaptation auf die Belastung des Knochens ist. Wenn aber die Knochenresorption fortschreitet, können die zunehmenden Belastungen im spongiösen Knochen und im Implantat bei einer lateralen Belastung zum Implantatmisserfolg führen. Resumen Objetivos: Aunque la pérdida de hueso alrededor de los implantes se informa como una complicación cuando progresa incontroladamente, la reabsorción no siempre lleva a la pérdida del implante, pero puede ser el resultado de la adaptación biomecánica al estrés. Para verificar esta hipótesis, se llevó a cabo un análisis tridimensional de elementos finitos y se investigó la influencia de la cantidad de reabsorción de hueso marginal y la forma en el estrés en el hueso y el implante. Material y métodos: Se crearon un total de 9 modelos de hueso con un implante: Un modelo sin reabsorción (Base) y 8 variaciones, el las que se combinaron tres diferentes profundidades de reabsorción con reabsorciones verticales o cónicas puras (vertical,horizontal). Se aplicaron fuerzas axiales y bucolinguales independientemente al nodo oclusal en el centro de la superestructura. Resultados: A pesar de la dirección de la carga, los estreses óseos fueron más altos en los modelos de reabsorción vertical pura (A) que en los modelos Base y se incrementaron con la profundidad de reabsorción. De todos modos, el estrés cortical fue mucho menor en los modelos de reabsorción cónica que en los modelos Base y A con la misma profundidad de reabsorción. Se observó una tendencia opuesta en el hueso esponjoso bajo carga bucolingual. Bajo carga bucolingual, el estrés mas alto en el implante se incrementó linealmente con la profundidad de reabsorción para todos los modelos y su localización se aproximó al espacio existente bajo el tornillo del pilar. Conclusión: Los resultados de este análisis sugieren que cierta cantidad de reabsorción cónica puede resultar de la adaptación biomecánica del hueso al estrés. De todos modos, al progresar la reabsorción ósea, los estrés crecientes en el hueso esponjoso y en el implante bajo carga lateral puede resultar en un fracaso del implante. [source]