Home About us Contact | |||
Australian Continent (australian + continent)
Selected AbstractsThree-dimensional seismic structure beneath the Australasian region from refracted wave observationsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000Y. Kaiho The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga,Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993,1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea. The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure. The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere. In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with highS -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage. [source] Quantifying uncertainty in estimates of C emissions from above-ground biomass due to historic land-use change to cropping in AustraliaGLOBAL CHANGE BIOLOGY, Issue 8 2001Damian J. Barrett Abstract Quantifying continental scale carbon emissions from the oxidation of above-ground plant biomass following land-use change (LUC) is made difficult by the lack of information on how much biomass was present prior to vegetation clearing and on the timing and location of historical LUC. The considerable spatial variability of vegetation and the uncertainty of this variability leads to difficulties in predicting biomass C density (tC ha,1) prior to LUC. The issue of quantifying uncertainties in the estimation of land based sources and sinks of CO2, and the feasibility of reducing these uncertainties by further sampling, is critical information required by governments world-wide for public policy development on climate change issues. A quantitative statistical approach is required to calculate confidence intervals (the level of certainty) of estimated cleared above-ground biomass. In this study, a set of high-quality observations of steady state above-ground biomass from relatively undisturbed ecological sites across the Australian continent was combined with vegetation, topographic, climatic and edaphic data sets within a Geographical Information System. A statistical model was developed from the data set of observations to predict potential biomass and the standard error of potential biomass for all 0.05° (approximately 5 × 5 km) land grid cells of the continent. In addition, the spatial autocorrelation of observations and residuals from the statistical model was examined. Finally, total C emissions due to historic LUC to cultivation and cropping were estimated by combining the statistical model with a data set of fractional cropland area per land grid cell, fAc (Ramankutty & Foley 1998). Total C emissions from loss of above-ground biomass due to cropping since European colonization of Australia was estimated to be 757 MtC. These estimates are an upper limit because the predicted steady state biomass may be less than the above-ground biomass immediately prior to LUC because of disturbance. The estimated standard error of total C emissions was calculated from the standard error of predicted biomass, the standard error of fAc and the spatial autocorrelation of biomass. However, quantitative estimates of the standard error of fAc were unavailable. Thus, two scenarios were developed to examine the effect of error in fAc on the error in total C emissions. In the first scenario, in which fAc was regarded as accurate (i.e. a coefficient of variation, CV, of fAc = 0.0), the 95% confidence interval of the continental C emissions was 379,1135 MtC. In the second scenario, a 50% error in estimated cropland area was assumed (a CV of fAc = 0.50) and the estimated confidence interval increased to between 350 and 1294 MtC. The CV of C emissions for these two scenarios was 25% and 29%. Thus, while accurate maps of land-use change contribute to decreasing uncertainty in C emissions from LUC, the major source of this uncertainty arises from the prediction accuracy of biomass C density. It is argued that, even with large sample numbers, the high cost of sampling biomass carbon may limit the uncertainty of above-ground biomass to about a CV of 25%. [source] Variability and trends in the directional wave climate of the Southern HemisphereINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2010Mark A. Hemer Abstract The effect of interannual climate variability and change on the historic, directional wave climate of the Southern Hemisphere is presented. Owing to a lack of in situ wave observations, wave climate in the Southern Hemisphere is determined from satellite altimetry and global ocean wave models. Altimeter data span the period 1985 to present, with the exception of a 2-year gap in 1989,1991. Interannual variability and trends in the significant wave height are determined from the satellite altimeter record (1991 to present), and the dominant modes of variability are identified using an empirical orthogonal function (EOF) analysis. Significant wave heights in the Southern Ocean are observed to show a strong positive correlation with the Southern Annular Mode (SAM), particularly during Austral autumn and winter months. Correlation between altimeter derived significant wave heights and the Southern Oscillation Index is observed in the Pacific basin, which is consistent with several previous studies. Variability and trends of the directional wave climate are determined using the ERA-40 Waves Re-analysis for the period 1980,2001. Significant wave height, mean wave period and mean wave direction data are used to describe the climate of the wave energy flux vector. An EOF analysis of the wave energy flux vector is carried out to determine the dominant modes of variability of the directional seasonal wave energy flux climate. The dominant mode of variability during autumn and winter months is strongly correlated to the SAM. There is an anti-clockwise rotation of wave direction with the southward intensification of the Southern Ocean storm belt associated with the SAM. Clockwise rotation of flux vectors is observed in the Western Pacific Ocean during El-Nino events. Directional variability of the wave energy flux in the Western Pacific Ocean has previously been shown to be of importance to sand transport along the south-eastern Australian margin, and the New Zealand region. The directional variability of the wave energy flux of the Southern Ocean associated with the SAM is expected to be of importance to the wave-driven currents responsible for the transport of sand along coastal margins in the Southern Hemisphere, in particular those on the Southern and Western coastal margins of the Australian continent. Copyright © 2009 Royal Meteorological Society [source] Australian biogeographical connections and the phylogeny of large genera in the plant family MyrtaceaeJOURNAL OF BIOGEOGRAPHY, Issue 7 2003Pauline Y. Ladiges Abstract Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species-rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species-rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north-east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south-east Asia-Australasia. Colonization (dispersal) may have been aided by rafting on micro-continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea-level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non-Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota. [source] Deeply divergent mitochondrial lineages reveal patterns of local endemism in chironomids of the Australian Wet TropicsAUSTRAL ECOLOGY, Issue 3 2009MATT N. KROSCH Abstract The Wet Tropics bioregion of north-eastern Australia has been subject to extensive fluctuations in climate throughout the late Pliocene and Pleistocene. Cycles of rainforest contraction and expansion of dry sclerophyll forest associated with such climatic fluctuations are postulated to have played a major role in driving geographical endemism in terrestrial rainforest taxa. Consequences for the distributions of aquatic organisms, however, are poorly understood. The Australian non-biting midge species Echinocladius martini Cranston (Diptera: Chironomidae), although restricted to cool, well-forested freshwater streams, has been considered to be able to disperse among populations located in isolated rainforest pockets during periods of sclerophyllous forest expansion, potentially limiting the effect of climatic fluctuations on patterns of endemism. In this study, mitochondrial COI and 16S data were analysed for E. martini collected from eight sites spanning the Wet Tropics bioregion to assess the scale and extent of phylogeographic structure. Analyses of genetic structure showed several highly divergent cryptic lineages with restricted geographical distributions. Within one of the identified lineages, strong genetic structure implied that dispersal among proximate (<1 km apart) streams was extremely restricted. The results suggest that vicariant processes, most likely due to the systemic drying of the Australian continent during the Plio-Pleistocene, might have fragmented historical E. martini populations and, hence, promoted divergence in allopatry. [source] Distinguishing tectonic from climatic controls on range-front sedimentationBASIN RESEARCH, Issue 4 2007M. C. Quigley ABSTRACT Geologic and chronometric studies of alluvial fan sequences in south-central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio-Quaternary reverse faults, implying that young tectonic activity has exerted a first-order control on long-term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast-supported conglomeritic sedimentation by ,30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post-date the youngest-dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long-term sediment supply but climate governed the spatial and temporal patterns of range-front sedimentation. Mild intraplate tectonism appears to have influenced Plio-Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea-level incursions. [source] |