Home About us Contact | |||
Resistance Pathway (resistance + pathway)
Selected AbstractsPotential multidrug resistance gene POHL: An ecologically relevant indicator in marine spongesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2001Anatoli Krasko Abstract Sponges are sessile filter feeders found in all aquatic habitats from the tropics to the arctic. Against potential environmental hazards, they are provided with efficient defense systems, e.g., protecting chaperones and/or the P-170/multidrug resistance pump system. Here we report on a further multidrug resistance pathway that is related to the pad one homologue (POH1) mechanism recently identified in humans. It is suggested that proteolysis is involved in the inactivation of xenobiotics by the POH1 system. Two cDNAs were cloned, one from the demosponge Geodia cydoniumand a second from the hexactinellid sponge Aphrocallistes vastus. The cDNA from G. cydonium, termed GCPOHL, encodes a deduced polypeptide with a size of 34,591 Da and that from A. vastus, AVPOHL, a protein of a calculated Mr of 34,282. The two sponge cDNAs are highly similar to each other as well as to the known sequences from fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae) and other Metazoa (from Schistosoma mansoni to humans). Under controlled laboratory conditions, the expression of the potential multidrug resistance gene POHL is, in G. cydonium, strongly upregulated in response to the toxins staurosporin (20 ,M) or taxol (50 ,M); the first detectable transcripts appear after 1 d and reach a maximum after 3 to 5 d of incubation. The relevance of the expression pattern of the G. cydonium gene POHL for the assessment of pollution in the field was determined at differently polluted sites in the area around Rovinj (Croatia; Mediterranean Sea, Adriatic Sea). The load of the selected sites was assessed by measuring the potency of XAD-7 concentrates of water samples taken from those places to induce the level of benzo[a]pyrene monooxygenase (BaPMO) in fish and to impair the multidrug resistance (MDR)/P-170 extrusion pump in clams. These field experiments revealed that the levels of inducible BaPMO activity in fish and of the MDR potential by the water concentrates are highly correlated with the level of expression of the potential multidrug resistance gene POHL in G. cydonium. This report demonstrates that the detoxification POH pathway, here mediated by the G. cydonium GCPOHL gene, is an additional marker for the assessment of the environmental load in a given marine area. [source] Effect of concurrent zidovudine use on the resistance pathway selected by abacavir-containing regimensHIV MEDICINE, Issue 6 2004ER Lanier Objectives Abacavir (ABC) selects for four mutations (K65R, L74V, Y115F and M184V) in HIV-1 reverse transcriptase (RT), both in vitro and during monotherapy in vivo. The aim of this analysis was to compare the selection of these and other nucleoside reverse transcriptase inhibitor (NRTI)-associated mutations by ABC-containing therapies in the presence and absence of concurrent lamivudine (3TC) and/or zidovudine (ZDV) and to assess the effect of these mutations on phenotypic susceptibility to the NRTIs. Design This study was a retrospective analysis of the patterns of NRTI-associated mutations selected following virological failure in six multicentre trials conducted during the development of ABC. Methods Virological failure was defined as confirmed vRNA above 400 HIV-1 RNA copies/mL. RT genotype and phenotype were determined using standard methods. Results K65R was selected infrequently by ABC-containing regimens in the absence of ZDV (13 of 127 patients), while L74V/I was selected more frequently (51 of 127 patients). Selection of both K65R and L74V/I was significantly reduced by co-administration of ZDV with ABC (one of 86 and two of 86 patients, respectively). Y115F was uncommon in the absence (seven of 127 patients) or presence (four of 86 patients) of ZDV. M184V was the most frequently selected mutation by ABC alone (24 of 70 patients) and by ABC plus 3TC (48 of 70 patients). Thymidine analogue mutations were associated with ZDV use. The K65R mutation conferred the broadest phenotypic cross-resistance of the mutations studied. Conclusions The resistance pathway selected upon virological failure of ABC-containing regimens is significantly altered by concurrent ZDV use, but not by concurrent 3TC use. These data may have important implications for the efficacy of subsequent lines of NRTI therapies. [source] A Chemical Approach Towards Understanding the Mechanism and Reversal of Drug Resistance in Plasmodium falciparum: Is it Viable?IUBMB LIFE, Issue 4-5 2002Kelly Chibale Abstract Genetic and biochemical approaches to studies of drug resistance mechanisms in Plasmodium falciparum have raised controversies and contradictions over the past several years. A different and novel chemical approach to this important problem is desirable at this point in time. Recently, the molecular basis of drug resistance in P. falciparum has been associated with mutations in the resistance genes, Chloroquine Resistance Transporter (PfCRT) and the P-glycoprotein homologue (Pgh1). Although not the determinant of chloroquine resistance in P. falciparum, mutations in Pgh1 have important implications for resistance to other antimalarial drugs. Because it is mutations in the aforementioned resistance genes rather than overexpression that has been associated with drug resistance in malaria, studies on mechanisms of drug resistance and its reversal by chemosensitisers should benefit from a chemical approach. Target-oriented organic synthesis of chemosensitisers against proteins implicated in drug resistance in malaria should shed light on mechanism of drug resistance and its reversal in this area. The effect of structurally diverse chemosensitisers should be examined on several putative resistance genes in P. falciparum to deal with antimalarial drug resistance in the broadest sense. Therefore, generating random mutations of these resistance proteins and subsequent screening in search of a specific phenotype followed by a search for mutations and/or chemosensitisers that affect a specific drug resistance pathway might be a viable strategy. This diversity-oriented organic synthesis approach should offer the means to simultaneously identify resistance proteins that can serve as targets for therapeutic intervention (therapeutic target validation) and chemosensitisers that modulate the functions of these proteins (chemical target validation). [source] The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and ArabidopsisTHE PLANT JOURNAL, Issue 6 2006L. Michael Weaver Summary Specific recognition of Hyaloperonospora parasitica isolate Cala2 by Arabidopsis thaliana Ws-0 is mediated by the resistance gene RPP1A. Transient expression of different truncations of RPP1A in tobacco leaves revealed that its TIR-NB-ARC portion is sufficient to induce an elicitor-independent cell death. In stable transgenic lines of Arabidopsis, overexpression of the RPP1A TIR-NB-ARC domains (E12) using the 35S promoter leads to broad-spectrum resistance to virulent strains of H. parasitica and Pseudomonas syringae DC3000. The TIR-NB-ARC-mediated constitutive immunity is due to activation of the salicylic acid-dependent resistance pathway and is relieved by either a mutation in EDS1 or the presence of the salicylate hydroxylase gene, NahG. Growth of 35S::E12 plants is reduced, a phenotype observed in many constitutively resistant mutants. RPP1A carries a hydrophobic peptide at its N-terminus that directs the RPP1A protein into membranes, though it may not be the sole determinant mediating membrane association of RPP1A. Two-phase partitioning and sucrose density gradient sedimentation established that RPP1A resides in the endoplasmic reticulum and/or Golgi apparatus. [source] The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infectionTHE PLANT JOURNAL, Issue 4 2004Paola Veronese Summary Three Botrytis -susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways. [source] Chloroquine resistance in the malarial parasite, Plasmodium falciparumMEDICINAL RESEARCH REVIEWS, Issue 5 2002Lyann M.B. Ursos Abstract Malarial parasites remain a health problem of staggering proportions. Worldwide, they infect about 500 million, incapacitate tens of millions, and kill approximately 2.5 million (mostly children) annually. Four species infect humans, but most deaths are caused by one particular species, Plasmodium falciparum. The rising number of malarial deaths is due in part to increased drug resistance in P. falciparum. There are many varieties of antimalarial drug resistance, and there may very well be several molecular level contributions to each variety. This is because there are a number of different drugs with different mechanisms of action in use, and more than one molecular event may sometimes be relevant for resistance to any one class of drugs. Thus, "multidrug" resistance in a clinical setting likely entails complex combinations of overlapping resistance pathways, each specific for one class of drug, that then add together to confer the particular multidrug resistance phenotype. Nonetheless, rapid progress has been made in recent years in elucidating mechanisms of resistance to specific classes of antimalarial drugs. As one example, resistance to the antimalarial drug chloroquine, which has been the mainstay therapy for decades, is becoming well understood. This article focuses on recent advances in determining the molecular mechanism of chloroquine resistance, with particular attention to the biochemistry and biophysics of the P. falciparum digestive vacuole, wherein changes in pH have recently been found to be associated with chloroquine resistance. © 2002 Wiley Periodicals, Inc. Med Res Rev, 22, No. 5, 465,491, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/med.10016 [source] Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathwaysMOLECULAR PLANT PATHOLOGY, Issue 5 2000Katrin Beßer Salicylic acid (SA) and its synthetic mimics 2,6-dichloroisonicotinic acid (DCINA) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), protect barley systemically against powdery mildew (Blumeria graminis f.sp. hordei, Bgh) infection by strengthening plant defence mechanisms that result in effective papillae and host cell death. Here, we describe the differential expression of a number of newly identified barley chemically induced (BCI) genes encoding a lipoxygenase (BCI-1), a thionin (BCI-2), an acid phosphatase (BCI-3), a Ca2+ -binding EF-hand protein (BCI-4), a serine proteinase inhibitor (BCI-7), a fatty acid desaturase (BCI-8) and several further proteins with as yet unknown function. Compared with SA, the chemicals DCINA and BTH were more potent inducers of both gene expression and resistance. Homologues of four BCI genes were detected in wheat and were also differentially regulated upon chemical activation of disease resistance. Except for BCI-4 and BCI-5 (unknown function), the genes were also induced by exogenous application of jasmonates, whereas treatments that raise endogenous jasmonates as well as wounding were less effective. The fact that BCI genes were not expressed during incompatible barley,Bgh interactions governed by gene-for-gene relationships suggests the presence of separate pathways leading to powdery mildew resistance. [source] CO2 sorption and diffusion in polymethyl methacrylate,clay nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 7 2005Allan R. Manninen This study reports the glass transition temperature (Tg), and sorption and diffusion of subcritical CO2 gas in polymethyl methacrylate (PMMA) nanocomposites containing organically modified smectite clay, Cloisite 20A (C20A). A range of methods for preparing the PMMA-clay nanocomposites was investigated and a solution coprecipitation method was selected as the most appropriate. Using this method, PMMA nanocomposite containing 2, 4, 6, and 10 wt% nanoclay loadings were prepared. Wide-angle X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) indicated that the 2 wt% nanocomposite materials had a well-dispersed intercalated clay structure. The Tg for PMMA-C20A nanocomposites, as measured by differential scanning calorimetry (DSC), was found to be independent of the clay loading. CO2 solubility studies from 0 to 65°C and pressures up to 5.5 MPa using an in situ gravimetric technique were performed on compression-molded films. The organoclay was found to have no effect on the solubility of CO2 in PMMA, and therefore the solubility of CO2 in the nanocomposite can be determined from the solubility of CO2 in the matrix polymer alone. Diffusion coefficients were determined using the appropriate transport models for these test conditions and the diffusion coefficients for CO2 in PMMA-C20A composites were found to increase with organoclay loading. It is believed that the processing path taken to prepare the nanocomposites may have resulted in the agglomeration of the C20A organoclay, thereby preventing the polymer chains from fully wetting and intercalating a large number of clay particles. These agglomerations are responsible for the formation of large-scale holes within the glassy nanocomposite, which behave as low resistance pathways for gas transport within the PMMA matrix. POLYM. ENG. SCI., 45:904,914, 2005. © 2005 Society of Plastics Engineers [source] |