Residual Disease Detection (residual + disease_detection)

Distribution by Scientific Domains

Kinds of Residual Disease Detection

  • minimal residual disease detection


  • Selected Abstracts


    Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: Potential usefulness in minimal residual disease detection

    CYTOMETRY, Issue 2 2009
    Joseph A. DiGiuseppe
    Abstract Background: The persistence of minimal residual disease (MRD) following therapy is an established prognostic factor in precursor B-cell acute lymphoblastic leukemia (pB-ALL). Detection of MRD in pB-ALL by flow cytometric immunophenotyping requires demonstration of abnormal antigen expression in leukemic B-cell precursors relative to that of normal B-cell precursors. The gene encoding CD49f (integrin ,-6) is one of several whose overexpression in pB-ALL at diagnosis has been associated with the subsequent detection of MRD. However, whether CD49f might be a useful reagent in the immunophenotypic detection of MRD in pB-ALL has not been evaluated. Methods: We evaluated CD49f expression by 4-color flow cytometry in normal B-cell precursors, and in a series of cases of pB-ALL, both at diagnosis and at intervals following the initiation of therapy. Results: In 10 control marrow samples, CD49f was undetectable or extremely dim in all but a minor subset of normal CD19+ B-lineage cells, whereas in 11 of 15 cases (73%) of pB-ALL, CD49f was moderate or bright at diagnosis, and persisted or became brighter after initiation of therapy. MRD detected using CD49f corresponded precisely with that obtained using a standard panel of antibodies, and permitted the detection of leukemic populations comprising as little as 0.02% of cells. Of the four pB-ALL cases in which CD49f was undetectable or dim at diagnosis, MRD was detected in two; in one of these, CD49f expression was substantially increased in the leukemic cells that persisted following initiation of therapy. Conclusions: CD49f is commonly overexpressed in p-B-ALL, and represents a potentially useful marker for the immunophenotypic detection of MRD. © 2008 Clinical Cytometry Society How to cite this article: DiGiuseppe JA, Fuller SG, Borowitz MJ. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytometry Part B 2008. [source]


    Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity,

    HEMATOLOGICAL ONCOLOGY, Issue 4 2009
    Rachel Rau
    Abstract Nucleophosmin (NPM) is a ubiquitously expressed chaperone protein that shuttles rapidly between the nucleus and cytoplasm, but predominantly resides in the nucleolus. It plays key roles in ribosome biogenesis, centrosome duplication, genomic stability, cell cycle progression and apoptosis. Somatic mutations in exon 12 of the NPM gene (NPM1) are the most frequent genetic abnormality in adult acute myeloid leukaemia (AML), found in approximately 35% of all cases and up to 60% of patients with normal karyotype (NK) AML. In children, NPM1 mutations are far less frequent, occurring in 8,10% of all AML cases, and in approximately 25% of those with a NK. NPM1 mutations lead to aberrant localization of the NPM protein into the cytoplasm, thus the designation, NPMc+ AML. NPMc+ AML is seen predominantly in patients with a NK and is essentially mutually exclusive of recurrent chromosomal translocations. Patients with NPM1 mutations are twice as likely as those who lack an NPM1 mutation to also have a FMS-like tyrosine kinase (FLT3) internal tandem duplication (ITD) mutation. NPMc+ AML is also characterized by a unique gene expression signature and microRNA signature. NPMc+ AML has important prognostic significance, as NPMc+ AML, in the absence of a coexisting FLT3-ITD mutation, is associated with a favourable outcome. NPM1 mutations have also shown great stability during disease evolution, and therefore represent a possible marker for minimal residual disease detection. Given its distinctive biologic and clinical features and its clear clinical relevance, NPMc+ AML is included as a provisional entity in the 2008 WHO classifications. There is still much to be learned about this genetic alteration, including its exact role in leukaemogenesis, how it interacts with other mutations and why it confers a more favourable prognosis. Further, it represents a potential therapeutic target warranting research aimed at identifying novel small molecules with activity in NPMc+ AML. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Development of a dual-color, double fusion FISH assay to detect RPN1/EVI1 gene fusion associated with inv(3), t(3;3), and ins(3;3) in patients with myelodysplasia and acute myeloid leukemia,

    AMERICAN JOURNAL OF HEMATOLOGY, Issue 8 2010
    Brandon M. Shearer
    Approximately 2,3% of adult patients with acute myeloid leukemia harbor a rearrangement of RPN1 (at 3q21) and EVI1 (at 3q26.2) as inv(3)(q21q26.2), t(3;3)(q21;q26.2), or ins(3;3)(q26.2;q21q26.2). The most recent World Health Organization (WHO) classification has designated AML with inv(3) or t(3;3) and associated RPN1/EVI1 fusion, as a distinct AML subgroup associated with an unfavorable prognosis. We have created a dual color, double fusion fluorescence in situ hybridization (D-FISH) assay to detect fusion of the RPN1 and EVI1 genes. A blinded investigation was performed using 30 normal bone marrow samples and 51 bone marrow samples from 17 patients with inv(3)(q21q26.2), 11 patients with t(3;3)(q21;q26.2), and one patient with ins(3;3)(q26.2;q21q26.2) previously defined by chromosome analysis. The unblinded results indicated abnormal RPN1/EVI1 fusion results in 30 (97%) of 31 samples from the inv(3)(q21q26.2) group including seven bone marrow samples for which chromosome analysis was unsuccessful or failed to detect an inv(3)(q21q26.2). Abnormal FISH results were detected in 14 (88%) of 16 samples with t(3;3)(q21;q26.2) and in the sole sample with an ins(3;3)(q26.2;q21q26.2). All 30 negative controls were normal and were used to establish a normal cutoff of 0.6% for the typical abnormal D-FISH signal pattern. Overall, this D-FISH assay was more accurate than chromosome analysis and based on the normal cutoff of 0.6%, this assay can be used for minimal residual disease detection and disease monitoring in patients with RPN1/EVI1 fusion. Am. J. Hematol., 2010. © 2010 Wiley-Liss, Inc. [source]


    Distinctive IGH gene segment usage and minimal residual disease detection in infant acute lymphoblastic leukaemias

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 2 2005
    Aihong Li
    Summary Infant acute lymphoblastic leukaemia (ALL) represents a rare but unique subset with poor prognosis. We analysed mixed-lineage leukaemia (MLL) gene rearrangements and the sequences of complete and incomplete immunoglobulin heavy chain gene rearrangements (IGH) in 14 infants (age ,12 months at diagnosis) enrolled on Dana-Farber Cancer Institute ALL Consortium Protocol 95,01. The dynamics of the leukaemic clone were followed during the course of the disease by quantitative real-time polymerase chain reaction of IGH rearrangements. Sixteen sequences were obtained from 13 (93%) of these infants. There was marked over usage of the VH6.1 gene segment (64%) in infants compared with older children with ALL (8%), (P < 0·001) and overusage of DH6 (P = 0·004) and JH1 (P = 0·004). Poor outcome was associated with MLL gene rearrangements rather than any specific VHDHJH gene usage patterns. Levels of minimal residual disease (MRD) at the end of induction appeared to be high in infants with ALL compared with older children, and although the number of infant cases studied was small, there were no differences in MRD levels after induction therapy in infant ALL with or without MLL gene rearrangements (P = 0·41) and quantitative MRD assessment at the early time points may not be predictive of outcome. Novel treatment strategies are required to improve the outcome in this poor prognosis subset of children with ALL. [source]