Home About us Contact | |||
Repression Mechanisms (repression + mechanism)
Selected AbstractsIdentification of a novel BTB-zinc finger transcriptional repressor, CIBZ, that interacts with CtBP corepressorGENES TO CELLS, Issue 9 2005Nobuhiro Sasai The transcriptional corepressor C-terminal binding protein (CtBP) is thought to be involved in development and oncogenesis, but the regulation of its corepressor activity is largely unknown. We show here that a novel BTB-zinc finger protein, CIBZ (CtBP-interacting BTB zinc finger protein; a mouse ortholog of rat ZENON that was recently identified as an e-box/dyad binding protein), redistributes CtBP to pericentromeric foci from a diffuse nuclear localization in interphase cells. CIBZ physically associates with CtBP via a conserved CtBP binding motif, PLDLR. When heterologously targeted to DNA, CIBZ represses transcription via two independent repression domains, an N-terminal BTB domain and a PLDLR motif-containing RD2 region, in a histone deacetylase-independent and -dependent manner, respectively. Mutation in the PLDLR motif abolishes the CIBZ-CtBP interaction and transcriptional repression activity of RD2, but does not affect the repression activity of the BTB domain. Furthermore, this PLDLR-mutated CIBZ cannot target CtBP to pericentromeric foci, although it is localized to the pericentromeric foci itself. These results suggest that at least one repression mechanism mediated by CIBZ is recruitment of the CtBP/HDAC complex to pericentromeric foci, and that CIBZ may regulate pericentromeric targeting of CtBP. [source] The cis -regulatory sequences required for expression of the Drosophila melanogaster adult cuticle gene ACP65AINSECT MOLECULAR BIOLOGY, Issue 4 2009M. Lestradet Abstract Post-embryonic development in insects requires successive molts. Molts are triggered by ecdysteroids, and the nature of the molt (larval, pupal or adult) is determined by juvenile hormones. The genes encoding cuticle proteins are targets of both classes of hormones, and therefore are interesting models to study hormone action at the molecular level. The Drosophila ACP65A cuticle gene is expressed exclusively during the synthesis of the adult exoskeleton, in epidermal domains synthesising flexible cuticle. We have examined the cis -regulatory sequences of ACP65A using phylogenetic comparisons and functional analysis, and find that only about 180 bp are essential, including an 81 bp intron. The restriction of ACP65A expression appears to depend on a strong repression mechanism. [source] EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operatorMOLECULAR MICROBIOLOGY, Issue 1 2004Jean Engohang-Ndong Summary Ethionamide (ETH) is an important second-line antitubercular drug used for the treatment of patients infected with multidrug-resistant Mycobacterium tuberculosis. Although ETH is a structural analogue of isoniazid, only little cross-resistance to these two drugs is observed among clinical isolates. Both isoniazid and ETH are pro-drugs that need to be activated by mycobacterial enzymes to exert their antimicrobial activity. We have recently identified two M. tuberculosis genes, Rv3854c (ethA) and Rv3855 (ethR), involved in resistance to ETH. ethA encodes a protein that belongs to the Flavin-containing monooxygenase family catalysing the activation of ETH. We show here that ethR, which encodes a repressor belonging to the TetR/CamR family of transcriptional regulators, negatively regulates the expression of ethA. By the insertion of the ethA promoter region upstream of the lacZ reporter gene, overexpression of ethR in trans was found to cause a strong inhibition of ethA expression, independently of the presence of ETH in the culture media. Electrophoretic mobility shift assays indicated that EthR interacts directly with the ethA promoter region. This interaction was confirmed by DNA footprinting analysis, which, in addition, identified the EthR-binding region. Unlike other TetR/CamR members, which typically bind 15 bp operators, EthR recognises an unusually long 55 bp region suggesting multimerization of the repressor on its operator. Identification by primer-extension of the ethA transcriptional start site indicated that it is located within the EthR-binding region. Taken together, bacterial two-hybrid experiments and gel filtration assays suggested a dimerization of EthR in the absence of its operator. In contrast, surface plasmon resonance analyses showed that eight EthR molecules bind cooperatively to the 55 bp operator, which represents a novel repression mechanism for a TetR/CamR member. [source] Translational repression mechanisms in prokaryotesMOLECULAR MICROBIOLOGY, Issue 5 2003Paula Jean Schlax Summary Translational repression results from a complex choreography of macromolecular interactions interfering with the formation of translational initiation complexes. The relationship between the rate and extent of formation of these interactions to form repressed mRNA complexes determines the extent of repression. A novel analysis of repression mechanisms is presented here and it indicates that the reversibility of repressed complex formation influences the steady state balance of the distribution of translationally active and inactive complexes and therefore has an impact on the efficiency of repression. Reviewed here is evidence for three distinct translational repression mechanisms, regulating expression of the transcription factor ,32, threonine tRNA synthetase and ribosomal proteins on the , operon in Escherichia coli. Efficient regulation of expression in these systems makes use of specific mRNA structures in quite different ways. [source] THIS ARTICLE HAS BEEN RETRACTED Epigenetic regulator polycomb group protein complexes control cell fate and cancerCANCER SCIENCE, Issue 6 2008Rieko Kanno The chromatin-associated Polycomb group (PcG) proteins were first identified in genetic screens for homeotic transformations in Drosophila melanogaster. Besides body patterning, members of the PcG are now known to regulate epigenetic cellular memory, stem cell self-renewal, and cancer development. Here, we discuss the multifarious functions of the PcG family, isoforms of protein complexes, and its enzymatic activities, for example histone methylation, links to DNA methylation, its phosphorylation status, H2A mono-ubiquitination, SUMOylation, and links to non-coding RNA. We also discuss the function of cytosolic PcG complexes as a regulator of receptor-induced actin polymerization and proliferation in a methylation-dependent manner. We propose that the functional versatility of PcG protein complexes contributed significantly to the complexity of heritable gene repression mechanisms, signal transduction, and cell proliferation in cancer development. (Cancer Sci 2008; 99: 1077,1084) [source] |