Repolarization Changes (repolarization + change)

Distribution by Scientific Domains


Selected Abstracts


Mechanism of Repolarization Change During Initiation of Supraventricular Tachycardia

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004
YENN-JIANG LIN M.D.
Introduction: Previous literature has documented the association between narrow QRS supraventricular tachycardia (SVT) and pronounced ST-T segment change. The aim of this study was to evaluate repolarization changes during SVT initiation and demonstrate the possible mechanism. Methods and Results: Fifty-one consecutive patients (20 men and 31 women; mean age 46.1 ± 16.4 years) with narrow QRS SVT (32 patients with AV nodal reentrant tachycardia and 19 patients with AV reentrant tachycardia) were included. We retrospectively analyzed the intracardiac recordings and ST-T segment changes on 12-lead surface ECGs during SVT initiation. Twenty-six (51%) patients developed ST segment repolarization changes during SVT initiation. Patients with shorter baseline sinus cycle length, shorter tachycardia cycle length, elevated systolic blood pressure before tachycardia induction, and greater reduction of systolic blood pressure had a higher incidence of repolarization changes. However, multivariate analysis showed that reduction of systolic blood pressure after SVT induction was the only independent predictor of repolarization changes. Furthermore, the maximal degree of ST segment depression during SVT correlated with the reduction of systolic blood pressure (r = 0.75, P < 0.001). Conclusion: Repolarization changes during SVT initiation were caused mainly by concurrent hemodynamic change after SVT initiation with abrupt cycle length shortening. [source]


Ventricular Repolarization Change During Initiation of Supraventricular Tachycardia

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 9 2003
YENN-JIANG LIN M.D.
No abstract is available for this article. [source]


Mechanism of Repolarization Change During Initiation of Supraventricular Tachycardia

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004
YENN-JIANG LIN M.D.
Introduction: Previous literature has documented the association between narrow QRS supraventricular tachycardia (SVT) and pronounced ST-T segment change. The aim of this study was to evaluate repolarization changes during SVT initiation and demonstrate the possible mechanism. Methods and Results: Fifty-one consecutive patients (20 men and 31 women; mean age 46.1 ± 16.4 years) with narrow QRS SVT (32 patients with AV nodal reentrant tachycardia and 19 patients with AV reentrant tachycardia) were included. We retrospectively analyzed the intracardiac recordings and ST-T segment changes on 12-lead surface ECGs during SVT initiation. Twenty-six (51%) patients developed ST segment repolarization changes during SVT initiation. Patients with shorter baseline sinus cycle length, shorter tachycardia cycle length, elevated systolic blood pressure before tachycardia induction, and greater reduction of systolic blood pressure had a higher incidence of repolarization changes. However, multivariate analysis showed that reduction of systolic blood pressure after SVT induction was the only independent predictor of repolarization changes. Furthermore, the maximal degree of ST segment depression during SVT correlated with the reduction of systolic blood pressure (r = 0.75, P < 0.001). Conclusion: Repolarization changes during SVT initiation were caused mainly by concurrent hemodynamic change after SVT initiation with abrupt cycle length shortening. [source]


Effects of adrenaline and potassium on QTc interval and QT dispersion in man

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2003
S. Lee
Abstract Background Hypoglycaemia alters cardiac repolarization acutely, with increases in rate-corrected QT (QTc) interval and QT dispersion (QTd) on the electrocardiogram (ECG); such changes are related to the counterregulatory sympatho-adrenal response. Adrenaline produces both QTc lengthening and a fall in plasma potassium (K+) when infused into healthy volunteers. Hypokalaemia prolongs cardiac repolarization independently however, and therefore our aim was to determine whether adrenaline-induced repolarization changes are mediated directly or through lowered plasma K+. Materials and methods Ten healthy males were studied on two occasions. At both visits they received similar l- adrenaline infusions but on one occasion potassium was also administered; infusion rates were adjusted to maintain circulating K+ at baseline. The QTc interval, QTd, peripheral physiological responses and plasma adrenaline and potassium concentrations were measured during both visits. Results The QTc interval and QTd increased both with and without potassium clamping. Without K+ replacement, mean (SE) QTc lengthened from 378 (5) ms to a final maximum value of 433 (10) ms, and QTd increased from 36 (5) ms to 69 (8) ms (both P < 0·001). During K+ replacement, QTc duration at baseline and study end was 385 (7) ms and 423 (11) ms, respectively (P < 0·001), and QTd 38 was (4) ms and 63 (5) ms (P = 0·001). Conclusions These data suggest that disturbed cardiac repolarization as a result of increases in circulating adrenaline occurs independently of extracellular potassium. A direct effect of adrenaline upon the myocardium appears the most likely mechanism. [source]


Mechanism of Repolarization Change During Initiation of Supraventricular Tachycardia

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004
YENN-JIANG LIN M.D.
Introduction: Previous literature has documented the association between narrow QRS supraventricular tachycardia (SVT) and pronounced ST-T segment change. The aim of this study was to evaluate repolarization changes during SVT initiation and demonstrate the possible mechanism. Methods and Results: Fifty-one consecutive patients (20 men and 31 women; mean age 46.1 ± 16.4 years) with narrow QRS SVT (32 patients with AV nodal reentrant tachycardia and 19 patients with AV reentrant tachycardia) were included. We retrospectively analyzed the intracardiac recordings and ST-T segment changes on 12-lead surface ECGs during SVT initiation. Twenty-six (51%) patients developed ST segment repolarization changes during SVT initiation. Patients with shorter baseline sinus cycle length, shorter tachycardia cycle length, elevated systolic blood pressure before tachycardia induction, and greater reduction of systolic blood pressure had a higher incidence of repolarization changes. However, multivariate analysis showed that reduction of systolic blood pressure after SVT induction was the only independent predictor of repolarization changes. Furthermore, the maximal degree of ST segment depression during SVT correlated with the reduction of systolic blood pressure (r = 0.75, P < 0.001). Conclusion: Repolarization changes during SVT initiation were caused mainly by concurrent hemodynamic change after SVT initiation with abrupt cycle length shortening. [source]


Drug-Induced Torsades de Pointes and Implications for Drug Development

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2004
Ph.D., ROBERT R. FENICHEL M.D.
Torsades de pointes is a potentially lethal arrhythmia that occasionally appears as an adverse effect of pharmacotherapy. Recently developed understanding of the underlying electrophysiology allows better estimation of the drug-induced risks and explains the failures of older approaches through the surface ECG. This article expresses a consensus reached by an independent academic task force on the physiologic understanding of drug-induced repolarization changes, their preclinical and clinical evaluation, and the risk-to-benefit interpretation of drug-induced torsades de pointes. The consensus of the task force includes suggestions on how to evaluate the risk of torsades within drug development programs. Individual sections of the text discuss the techniques and limitations of methods directed at drug-related ion channel phenomena, investigations aimed at action potentials changes, preclinical studies of phenomena seen only in the whole (or nearly whole) heart, and interpretation of human ECGs obtained in clinical studies. The final section of the text discusses drug-induced torsades within the larger evaluation of drug-related risks and benefits. (J Cardiovasc Electrophysiol, Vol. 15, pp. 475-495, April 2004) [source]