Renal Sympathetic Nerve Activity (renal + sympathetic_nerve_activity)

Distribution by Scientific Domains


Selected Abstracts


Reactive oxygen species in rostral ventrolateral medulla modulate cardiac sympathetic afferent reflex in rats

ACTA PHYSIOLOGICA, Issue 4 2009
M.-K. Zhong
Abstract Aim:, The aim of the present study was to investigate whether reactive oxygen species (ROS) in rostral ventrolateral medulla (RVLM) modulate cardiac sympathetic afferent reflex (CSAR) and the enhanced CSAR response caused by microinjection of angiotensin II (Ang II) into the paraventricular nucleus (PVN). Methods:, Under urethane and ,-chloralose anaesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin (1.0 nmol). Results:, Bilateral RVLM microinjection of tempol (a superoxide anion scavenger) or polyethylene glycol-superoxide dismutase (PEG-SOD, an analogue of endogenous superoxide dismutase) attenuated the CSAR, but did not cause significant change in baseline RSNA and MAP. NAD(P)H oxidase inhibitors apocynin or phenylarsine oxide (PAO) also showed similar effects, but SOD inhibitor diethyldithio-carbamic acid (DETC) enhanced the CSAR and baseline RSNA, and increased the baseline MAP. Bilateral PVN microinjection of Ang II (0.3 nmol) enhanced the CSAR and increased RSNA and MAP, which was inhibited by the pre-treatment with RVLM administration of tempol, PEG-SOD, apocynin or PAO. The pre-treatment with DETC in the RVLM only showed a tendency in potentiating the CSAR response of Ang II in the PVN, but significantly potentiated the RSNA and MAP responses of Ang II. Conclusion:, These results suggest that the NAD(P)H oxidase-derived ROS in the RVLM modulate the CSAR. The ROS in the RVLM is necessary for the enhanced CSAR response caused by Ang II in the PVN. [source]


Role of differential changes in sympathetic nerve activity in the preparatory adjustments of cardiovascular functions during freezing behaviour in rats

EXPERIMENTAL PHYSIOLOGY, Issue 1 2010
Kenju Miki
Freezing behaviour is associated with a distinct pattern of changes in cardiovascular function, which has been considered as a preparatory reflex for ,fight or flight' behaviour. However, the detailed mechanisms underlying preparatory cardiovascular adjustments and their physiological implications have received less attention. We studied responses in renal and lumbar sympathetic nerve activity and cardiovascular function during freezing behaviour in conscious rats, which was induced by exposure to loud white noise. Freezing behaviour was associated with regionally specific alterations in sympathetic nerve activity, in that renal sympathetic nerve activity increased while lumbar sympathetic nerve activity did not change. Moreover, freezing behaviour was associated with differential shifts in baroreflex control of sympathetic outflows, which could help to explain the selective responses in renal and lumbar sympathetic nerve activity during freezing behaviour. These differential changes in sympathetic outflows would result in a visceral vasoconstriction without having any impact on the skeletal muscle vasculature. These cardiovascular adjustments during freezing behaviour may help to explain the immediate and massive increase in muscular blood flow that occurs at the onset of fight or flight behaviour. It is hypothesized that central command originating from the defence area could somehow modulate separate baroreflex pathways, causing differential changes in sympathetic nerve activity to generate the preparatory cardiovascular adjustments during the freezing behaviour. [source]


Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the rat

EXPERIMENTAL PHYSIOLOGY, Issue 4 2007
Tao Zhang
In this study, we employed both power spectral analysis and cross-sample entropy measurement to assess the relationship between two time series, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA), during a mild haemorrhage in anaesthetized Wistar rats. Removal of 1 ml of venous blood decreased BP (by 7.1 ± 0.7 mmHg) and increased RSNA (by 25.9 ± 2.4%). During these changes, the power in the RSNA signal at heart rate frequency was reduced but coherence between the spectra at heart rate frequency in RSNA and ABP remained unchanged. Cross-sample entropy was significantly increased (by 10%) by haemorrhage, revealing that there was greater asynchrony between ABP and the RSNA time series. Intrathecal administration of the glutamate receptor antagonist kynurenic acid (2 mm) almost halved (P < 0.01) the reflex increase in RSNA. Also during kynurenic acid block, haemorrhage failed to change total power, power at heart rate frequency, coherence at heart rate frequency, or the cross-sample entropy measurements. We conclude that the increase in asynchrony between ABP and RSNA during the reflex increase in RSNA was a consequence of an increase in synaptic input to the spinal renal neurones. The data show that the cross-sample entropy calculations can characterize the non-linearities of neural mechanisms underlying cardiovascular control and have a potential to reveal how some aspects of homeostatic regulation of kidney function is achieved by the autonomic nervous system. [source]


Role of cardiac-renal neural reflex in regulating sodium excretion during water immersion in conscious dogs

THE JOURNAL OF PHYSIOLOGY, Issue 1 2002
Kenju Miki
The present study was undertaken to determine the role of cardiopulmonary mechanoreceptors in inducing the sustained reduction of renal sympathetic nerve activity (RSNA) and concomitant changes in sodium excretion occurring during water immersion (WI) in intact dogs. Seven cardiac-denervated dogs were chronically instrumented for measuring RSNA, systemic arterial (Pa), central venous (Pcv) and left atrial pressures (Pla). WI initially decreased RSNA in cardiac denervated dogs by 10.0 ± 5.5 %; thereafter the RSNA fell to a nadir of 18.5 ± 5.6 % (P < 0.05) at 40,80 min of WI and then returned toward the pre-immersion level. Renal sodium excretion increased significantly by 211 ± 69 % (P < 0.05) only during the first 20,40 min of WI. WI increased Pa, Pcv and Pla in a step manner from 94 ± 3 to 108 ± 3 mmHg (P < 0.05), from 1.4 ± 0.5 to 12.3 ± 1.0 mmHg (P < 0.05) and from 4.9 ± 0.6 to 15.4 ± 1.2 mmHg (P < 0.05), respectively. These responses in RSNA and sodium excretion to WI in the cardiac-denervated dogs were significantly (P < 0.05) attenuated compared with those in a previous group of intact dogs. These data suggest that the attenuated responses of neural and excretory response to WI observed in cardiac-denervated dogs can be attributed to an interruption of afferent input originating from the cardiopulmonary mechanoreceptors to the central nervous system. [source]


Causal link between neonatal hydronephrosis and later development of hypertension

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 2 2010
Mattias Carlström
Summary 1. Although congenital ureteral obstruction is a common disorder in infants, its pathophysiology remains poorly understood and its clinical management continues to be debated. During the past decade, the surgical management of non-symptomatic hydronephrosis in children has become more conservative, but the long-term physiological consequences of this new policy are unclear. 2. In experimental models with complete ureteral obstruction, tubular atrophy and interstitial inflammation occur rapidly. Although this type of obstruction is very rare in clinical practice, it is often referred to in clinical discussions. New studies, using a model with chronic partial ureteral obstruction, have demonstrated that hydronephrosis is associated with renal injuries and is causally related to hypertension. 3. The mechanisms underlying the development of hypertension in experimental hydronephrosis are complex and involve changes in both the renin,angiotensin system and renal sympathetic nerve activity. Furthermore, oxidative stress and nitric oxide deficiency in the diseased kidney, with consequent resetting of the tubuloglomerular feedback mechanism, appear to play a pivotal role in the development and maintenance of hyper-tension. 4. In view of the new knowledge regarding the long-term effects of partial ureteral obstruction, today's non-operative management of hydronephrosis should be reconsidered to prevent obstructive nephropathy and hypertension in later life. [source]


Lowering of blood pressure during chronic suppression of central sympathetic outflow: Insight from computer simulations

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 2 2010
Radu Iliescu
Summary 1. Chronic electrical stimulation of the carotid sinuses has provided unique insight into the mechanisms that cause sustained reductions in blood pressure during chronic suppression of central sympathetic outflow. 2. Because renal denervation does not abolish the sustained fall in arterial pressure in response to baroreflex activation, this observation has seemingly challenged the concept that the kidneys play a critical role in the long-term control of arterial pressure during chronic changes in sympathetic activity. The aim of the present study was to use computer simulations to provide a more comprehensive understanding of physiological mechanisms that mediate sustained reductions in arterial pressure during prolonged baroreflex-mediated suppression of central sympathetic outflow. 3. Physiological responses to baroreflex activation under different conditions were simulated by an established mathematical model of human physiology (QHP2008; see Supporting Information (Appendix S1) provided in the online version of this article and/or http://groups.google.com/group/modelingworkshop). The model closely reproduced empirical data, providing important validation of its accuracy. 4. The simulations indicated that baroreflex-mediated suppression of renal sympathetic nerve activity does chronically increase renal excretory function but that, in addition, hormonal and haemodynamic mechanisms also contribute to this natriuretic response. The contribution of these redundant natriuretic mechanisms to the chronic lowering of blood pressure is of increased importance when suppression of renal adrenergic activity is prevented, such as after renal denervation. Activation of these redundant natriuretic mechanisms occurs at the expense of excessive fluid retention. 5. More broadly, the present study illustrates the value of numerical simulations in elucidating physiological mechanisms that are not obvious intuitively and, in some cases, not readily testable in experimental studies. [source]


NEURAL CONTROL OF RENAL MEDULLARY PERFUSION

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2004
Gabriela A Eppel
Summary 1.,There is strong evidence that the renal medullary circulation plays a key role in long-term blood pressure control. This, and evidence implicating sympathetic overactivity in development of hypertension, provides the need for understanding how sympathetic nerves affect medullary blood flow (MBF). 2.,The precise vascular elements that regulate MBF under physiological conditions are unknown, but likely include the outer medullary portions of descending vasa recta and afferent and efferent arterioles of juxtamedullary glomeruli, all of which receive dense sympathetic innervation. 3.,Many early studies of the impact of sympathetic drive on MBF were flawed, both because of the methods used for measuring MBF and because single and often intense neural stimuli were tested. 4.,Recent studies have established that MBF is less sensitive than cortical blood flow (CBF) to electrical renal nerve stimulation, particularly at low stimulus intensities. Indeed, MBF appears to be refractory to increases in endogenous renal sympathetic nerve activity within the physiological range in all but the most extreme cases. 5.,Multiple mechanisms appear to operate in concert to blunt the impact of sympathetic drive on MBF, including counter-regulatory roles of nitric oxide and perhaps even paradoxical angiotensin II-induced vasodilatation. Regional differences in the geometry of glomerular arterioles are also likely to predispose MBF to be less sensitive than CBF to any given vasoconstrictor stimulus. 6.,Failure of these mechanisms would promote reductions in MBF in response to physiological activation of the renal nerves, which could, in turn, lead to salt and water retention and hypertension. [source]


Renal And Cardiac Sympathetic Baroreflexes In Hypertensive Rabbits

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2001
Geoffrey A Head
SUMMARY 1. The purpose of the present study was to assess the changes to renal sympathetic nerve activity (RSNA) baroreflexes during the development of hypertension after renal clipping in conscious rabbits. 2. Rabbits were fitted with a clip on the right renal artery or underwent a sham operation under halothane anaesthesia. A recording electrode was implanted on the left renal nerve 1 week before the experiment, 3 or 6 weeks after the initial operation. During the experiment, drug-induced ramp rises and falls in mean arterial pressure (MAP) were used to produce RSNA and heart rate (HR) baroreflex curves. The RSNA for each experiment was calibrated against maximum RSNA evoked by stimulation of baroreceptor-independent trigeminal afferents. 3. Mean arterial pressure was 20 and 36% higher 3 and 6 weeks after clip implantation, respectively. Renal sympathetic nerve activity baroreflex curves were reset rightwards accordingly, but the shape of the RSNA curves was differentially affected. 4. At both hypertensive periods, MAP,HR baroreflex gain was markedly reduced due to a reduction in curvature. The HR baroreflex range was increased. The RSNA baroreflex gain was reduced at 3 weeks, which was due to a 35% lower RSNA baroreflex range, but was similar to sham animals at 6 weeks. 5. The results show that, in established two kidney, one clip hypertension in rabbits, the sympathetic baroreflex is relatively well preserved but sensitivity of cardiac baroreflexes is attenuated. Therefore, the short-term inhibition of RSNA baroreflexes is not related to the level of blood pressure or the development of secondary changes, such as cardiac or vascular hypertrophy, but may be related to circulating angiotensin, which is known to increase at this time. [source]


Neural Regulation Of Renal Blood Flow: A Re-Examination

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2000
Simon C Malpas
SUMMARY 1. The importance of renal sympathetic nerve activity (RSNA) in the regulation of renal function is well established. However, it is less clear how the renal vasculature responds to the different mean levels and patterns of RSNA. While many studies have indicated that small to moderate changes in RSNA preferentially regulate renin secretion or sodium excretion and only large changes in RSNA regulate renal blood flow (RBF), other experimental evidence suggests that small changes in RSNA can influence RBF 2. When RSNA has been directly measured in conjunction with RBF, it appears that a range of afferent stimuli can induce reflex changes in RBF. However, many studies in a variety of species have measured RBF only during stimuli designed to reflexly increase or decrease sympathetic activity, but have not recorded RSNA. While this approach can be informative, it is not definitive because the ability of the vasculature to respond to RSNA may, in part, reflect the resting level of RSNA and, therefore, the vasoconstrictive state of the vasculature under the control conditions. 3. Further understanding of the control of RBF by RSNA has come from studies that have analysed the underlying rhythms in sympathetic nerve activity and their effect on the cardiovascular system. These studies show that the frequency,response characteristic of the renal vasculature is such that higher frequency oscillations in RSNA (above 0.6 Hz) contribute to setting the mean level of RBF. In comparison, lower frequency oscillations in RSNA can induce cyclic vasoconstriction and dilation in the renal vasculature, thus inducing oscillations in RBF. 4. In summary, the present review discusses the neural control of RBF, summarizing evidence in support of the hypothesis that RBF is under the influence of RSNA across the full range of RSNA. [source]