Auditory Nerve (auditory + nerve)

Distribution by Scientific Domains


Selected Abstracts


Tonotopic gradients of Eph family proteins in the chick nucleus laminaris during synaptogenesis

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2004
Abigail L. Person
Abstract Topographically precise projections are established early in neural development. One such topographically organized network is the auditory brainstem. In the chick, the auditory nerve transmits auditory information from the cochlea to nucleus magnocellularis (NM). NM in turn innervates nucleus laminaris (NL) bilaterally. These projections preserve the tonotopy established at the level of the cochlea. We have begun to examine the expression of Eph family proteins during the formation of these connections. Optical density measurements were used to describe gradients of Eph proteins along the tonotopic axis of NL in the neuropil, the somata, and the NM axons innervating NL at embryonic day 10, when synaptic connections from NM to NL are established. At E10,11, NL dorsal neuropil expresses EphA4 at a higher concentration in regions encoding high frequency sounds, decreasing in concentration monotonically toward the low frequency (caudolateral) end. In the somata, both EphA4 and ephrin-B2 are concentrated at the high frequency end of the nucleus. These tonotopic gradients disappear between E13 and E15, and expression of these molecules is completely downregulated by hatching. The E10,11 patterns run counter to an apparent gradient in dendrite density, as indicated by microtubule associated protein 2 (MAP2) immunolabeling. Finally, ephrin-B2 is also expressed in a gradient in tissue ventral to the NL neuropil. Our findings thus suggest a possible conserved mechanism for establishing topographic projections in diverse sensory systems. These results of this study provide a basis for the functional examination of the role of Eph proteins in the formation of tonotopic maps in the brainstem. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 28,39, 2004 [source]


Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
Roland Schaette
Tinnitus, the perception of a sound in the absence of acoustic stimulation, is often associated with hearing loss. Animal studies indicate that hearing loss through cochlear damage can lead to behavioral signs of tinnitus that are correlated with pathologically increased spontaneous firing rates, or hyperactivity, of neurons in the auditory pathway. Mechanisms that lead to the development of this hyperactivity, however, have remained unclear. We address this question by using a computational model of auditory nerve fibers and downstream auditory neurons. The key idea is that mean firing rates of these neurons are stabilized through a homeostatic plasticity mechanism. This homeostatic compensation can give rise to hyperactivity in the model neurons if the healthy ratio between mean and spontaneous firing rate of the auditory nerve is decreased, for example through a loss of outer hair cells or damage to hair cell stereocilia. Homeostasis can also amplify non-auditory inputs, which then contribute to hyperactivity. Our computational model predicts how appropriate additional acoustic stimulation can reverse the development of such hyperactivity, which could provide a new basis for treatment strategies. [source]


Netrin-G2 and netrin-G2 ligand are both required for normal auditory responsiveness

GENES, BRAIN AND BEHAVIOR, Issue 4 2008
W. Zhang
Mice in which netrin-G2 has been genetically inhibited do not startle to an acoustic stimulus, but otherwise perform normally through a behavioral test battery. Light microscopic examination of the inner ear showed no obvious structural abnormalities. Brainstem responses to acoustic stimuli (auditory brainstem responses, ABR) were also present, confirming the lack of any overarching defects in the inner ear or auditory nerve. Genetic inhibition of netrin-G2 ligand produced a nearly identical phenotype, that is, no startle with ABR present, and otherwise normal. This similarity confirms that these two proteins act in the same biological pathway. We have also determined that the affinity between the two proteins is strong, around 2.5 nm, similar to that observed between netrin-G1 and netrin-G1 ligand , 2.3 nm in our hands. The combination of equivalent phenotypes when genetically inhibited coupled with evidence of a strong biochemical interaction supports the notion of a receptor,ligand interaction between these two proteins in vivo. This interaction is critical for auditory synaptic responsiveness in the brain. [source]


Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: Effects of brain-derived neurotrophic factor and fibroblast growth factor

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2007
Josef M. Miller
Abstract The extent to which neurotrophic factors are able to not only rescue the auditory nerve from deafferentation-induced degeneration but also promote process regrowth is of basic and clinical interest, as regrowth may enhance the therapeutic efficacy of cochlear prostheses. The use of neurotrophic factors is also relevant to interventions to promote regrowth and repair at other sites of nerve trauma. Therefore, auditory nerve survival and peripheral process regrowth were assessed in the guinea pig cochlea following chronic infusion of BDNF + FGF1 into scala tympani, with treatment initiated 4 days, 3 weeks, or 6 weeks after deafferentation from deafening. Survival of auditory nerve somata (spiral ganglion neurons) was assessed from midmodiolar sections. Peripheral process regrowth was assessed using pan-Trk immunostaining to selectively label afferent fibers. Significantly enhanced survival was seen in each of the treatment groups compared to controls receiving artificial perilymph. A large increase in peripheral processes was found with BDNF + FGF1 treatment after a 3-week delay compared to the artificial perilymph controls and a smaller enhancement after a 6-week delay. Neurotrophic factor treatment therefore has the potential to improve the benefits of cochlear implants by maintaining a larger excitable population of neurons and inducing neural regrowth. © 2007 Wiley-Liss, Inc. [source]


Directional characteristics of the auditory system of cicadas: is the sound producing tymbal an integral part of directional hearing?

PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2004
P. J. Fonseca
Abstract. Directional hearing is investigated in males of two species of cicadas, Tympanistalna gastrica (Stål) and Tettigetta josei Boulard, that are similar in size but show different calling song spectra. The vibrational response of the ears is measured with laser vibrometry and compared with thresholds determined from auditory nerve recordings. The data are used to investigate to what extent the directional characteristic of the tympanal vibrations is encoded by the activity of auditory receptors. Laser measurements show complex vibrations of the tympanum, and reveal that directional differences are rather high (>15 dB) in characteristic but limited frequency ranges. At low frequencies, both species show a large directional difference at the same frequency (3,5 kHz) whereas, above 10 kHz, the directional differences correspond to the different resonant frequencies of the respective tymbals. Consequently, due to the mechanical resonance of the tymbal, the frequency range at which directional differences are high differs between the two species that otherwise show similar dimensions of the acoustic system. The directional differences observed in the tympanal vibrations are also observed in the auditory nerve activity. These recordings confirm that the biophysically determined directional differences are available within the nervous system for further processing. Despite considerable intra as well as interindividual variability, the ears of the cicadas investigated here exhibit profound directional characteristics, because the thresholds determined from recordings of the auditory nerve at 30° to the right and left of the longitudinal axis differ by more than 5 dB. [source]


Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 17 2010
Kai Yan
Abstract Geckos use vocalizations for intraspecific communication, but little is known about the organization of their central auditory system. We therefore used antibodies against the calcium-binding proteins calretinin (CR), parvalbumin (PV), and calbindin-D28k (CB) to characterize the gecko auditory system. We also examined expression of both glutamic acid decarboxlase (GAD) and synaptic vesicle protein (SV2). Western blots showed that these antibodies are specific to gecko brain. All three calcium-binding proteins were expressed in the auditory nerve, and CR immunoreactivity labeled the first-order nuclei and delineated the terminal fields associated with the ascending projections from the first-order auditory nuclei. PV expression characterized the superior olivary nuclei, whereas GAD immunoreactivity characterized many neurons in the nucleus of the lateral lemniscus and some neurons in the torus semicircularis. In the auditory midbrain, the distribution of CR, PV, and CB characterized divisions within the central nucleus of the torus semicircularis. All three calcium-binding proteins were expressed in nucleus medialis of the thalamus. These expression patterns are similar to those described for other vertebrates. J. Comp. Neurol. 518:3409,3426, 2010. © 2010 Wiley-Liss, Inc. [source]


Laser stimulation of single auditory nerve fibers,,§¶,

THE LARYNGOSCOPE, Issue 10 2010
Philip D. Littlefield MD
Abstract Objectives/Hypothesis: One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design: In vivo study using normal-hearing adult gerbils. Methods: Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 ,m and 1.873 ,m, with pulse durations of 35 ,s to 1,000 ,s, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-,m-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results: Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions: Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Laryngoscope, 2010 [source]


Incidence and Characteristics of Facial Nerve Stimulation in Children With Cochlear Implants,

THE LARYNGOSCOPE, Issue 10 2006
Sharon L. Cushing BScH
Abstract Objectives: Electrical stimulation from a cochlear implant can spread beyond the auditory nerve. The aims of this study were to accurately measure facial nerve stimulation in pediatric implant users and to determine the characteristics and incidence of this unwanted activity. Part A consisted of a prospective study of a randomized sample of 44 pediatric implant users. Part B consisted of a retrospective analysis of 121 children with previously recorded electrically evoked auditory brainstem responses (EABR). Study Design and Methods: Responses were evoked by 3 electrodes along the implant array in three groups of children: 1) postmeningitic, 2) abnormal cochlea, and 3) neither. Intraoperative measures were obtained under anesthesia; all other recordings were completed in awake children. Results: Intraoperative recordings revealed large nonauditory responses in a number of channels, including the midline EABR. Under paralysis, these responses disappeared, and clear EABRs were recorded. Similarly, prospective postoperative electromyographic (EMG) responses from the facial nerve were found in more than 59% (26 of 44) of experienced implant users (Nucleus 24): 31% of postmeningitic children (4 of 13), 80% of those with abnormal cochlea (8 of 10), and 66% of those with neither (14 of 21). Retrospective analysis of previously recorded postoperative EABRs demonstrated facial nerve stimulation in 35% (42 of 121). In most cases, facial nerve stimulation occurred when levels were perceptually loud but comfortable. Conclusions: 1) Facial nerve potentials can be recorded using EMG in a large proportion of cochlear implant users at high levels of stimulation. 2) The EABR can be obscured in the presence of facial nerve stimulation and care should be taken to distinguish it from the EMG response, particularly when auditory brainstem activity is in question. 3) Use of surface EMG provides an additional objective measure to ensure the safe and comfortable use of cochlear implants. [source]