Home About us Contact | |||
Auditory Feedback (auditory + feedback)
Selected AbstractsDaily and developmental modulation of "premotor" activity in the birdsong system,DEVELOPMENTAL NEUROBIOLOGY, Issue 12 2009Nancy F. Day Abstract Human speech and birdsong are shaped during a sensorimotor sensitive period in which auditory feedback guides vocal learning. To study brain activity as song learning occurred, we recorded longitudinally from developing zebra finches during the sensorimotor phase. Learned sequences of vocalizations (motifs) were examined along with contemporaneous neural population activity in the song nucleus HVC, which is necessary for the production of learned song (Nottebohm et al. 1976: J Comp Neurol 165:457,486; Simpson and Vicario 1990: J Neurosci 10:1541,1556). During singing, HVC activity levels increased as the day progressed and decreased after a night of sleep in juveniles and adults. In contrast, the pattern of HVC activity changed on a daily basis only in juveniles: activity bursts became more pronounced during the day. The HVC of adults was significantly burstier than that of juveniles. HVC bursting was relevant to song behavior because the degree of burstiness inversely correlated with the variance of song features in juveniles. The song of juveniles degrades overnight (Deregnaucourt et al. 2005: Nature 433:710,716). Consistent with a relationship between HVC activity and song plasticity (Day et al. 2008: J Neurophys 100:2956,2965), HVC burstiness degraded overnight in young juveniles and the amount of overnight degradation declined with developmental song learning. Nocturnal changes in HVC activity strongly and inversely correlated with the next day's change, suggesting that sleep-dependent degradation of HVC activity may facilitate or enable subsequent diurnal changes. Collectively, these data show that HVC activity levels exhibit daily cycles in adults and juveniles, whereas HVC burstiness and song stereotypy change daily in juveniles only. In addition, the data indicate that HVC burstiness increases with development and inversely correlates with song variability, which is necessary for trial and error vocal learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathwayEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008Haruhito Horita Abstract Similar to humans, songbirds rely on auditory feedback to maintain the acoustic and sequence structure of adult learned vocalizations. When songbirds are deafened, the learned features of song, such as syllable structure and sequencing, eventually deteriorate. However, the time-course and initial phases of song deterioration have not been well studied, particularly in the most commonly studied songbird, the zebra finch. Here, we observed previously uncharacterized subtle but significant changes to learned song within a few days following deafening. Syllable structure became detectably noisier and silent intervals between song motifs increased. Although song motif sequences remained stable at 2 weeks, as previously reported, pronounced changes occurred in longer stretches of song bout sequences. These included deletions of syllables between song motifs, changes in the frequency at which specific chunks of song were produced and stuttering for birds that had some repetitions of syllables before deafening. Changes in syllable structure and song bout sequence occurred at different rates, indicating different mechanisms for their deterioration. The changes in syllable structure required an intact lateral part but not the medial part of the pallial-basal ganglia vocal pathway, whereas changes in the song bout sequence did not require lateral or medial portions of the pathway. These findings indicate that deafening-induced song changes in zebra finches can be detected rapidly after deafening, that acoustic and sequence changes can occur independently, and that, within this time period, the pallial-basal ganglia vocal pathway controls the acoustic structure changes but not the song bout sequence changes. [source] THE ROLE OF AUDITORY CUES IN MODULATING THE PERCEIVED CRISPNESS AND STALENESS OF POTATO CHIPSJOURNAL OF SENSORY STUDIES, Issue 5 2004MASSIMILIANO ZAMPINI ABSTRACT We investigated whether the perception of the crispness and staleness of potato chips can be affected by modifying the sounds produced during the biting action. Participants in our study bit into potato chips with their front teeth while rating either their crispness or freshness using a computer-based visual analog scale. The results demonstrate that the perception of both the crispness and staleness was systematically altered by varying the loudness and/or frequency composition of the auditory feedback elicited during the biting action. The potato chips were perceived as being both crisper and fresher when either the overall sound level was increased, or when just the high frequency sounds (in the range of 2 kHz,20 kHz) were selectively amplified. These results highlight the significant role that auditory cues can play in modulating the perception and evaluation of foodstuffs (despite the fact that consumers are often unaware of the influence of such auditory cues). The paradigm reported here also provides a novel empiric methodology for assessing such multisensory contributions to food perception. [source] Lateral magnocellular nucleus of the anterior neostriatum (LMAN) in the zebra finch: Neuronal connectivity and the emergence of sex differences in cell morphologyMICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2001Barbara E. Nixdorf-Bergweiler Abstract The song system of birds provides a model system to study basic mechanisms of neuronal plasticity and development underlying learned behavior. Song learning and production involve discrete sets of interconnected nuclei in the avian brain. One of these nuclei, the lateral magnocellular nucleus of the anterior neostriatum (LMAN), is the output of the so-called anterior forebrain pathway known to be essential for learning and maintenance of song, both processes depending on auditory feedback. In zebra finches, only males sing and this sexually dimorphic behavior is mirrored by sexual dimorphism in neuronal structure that develops during ontogeny. Female zebra finches are not able to sing and nuclei of the song system are strongly reduced in size or even lacking, when compared to male brains. Only LMAN can be delineated as easily in females as in males. Since female zebra finches, despite being unable to sing, recognize song just as males do and form a memory for song (model acquisition) early in life, LMAN is a putative candidate for song acquisition in both sexes. Therefore, development of LMAN was studied at the cellular and ultrastructural level in both male and female zebra finches. Regressive development of dendritic spines, enlargement of neuronal cell body and nuclei size, as well as changes at the nucleolar level are events all occurring exclusively in males, when song learning progresses. The decline in synapse number and the augmentation in synaptic contact length at synapses in LMAN in males are indicative for synaptic plasticity, whereas in females synapse number and synaptic contact length remain unchanged. Microsc. Res. Tech. 54:335,353, 2001. © 2001 Wiley-Liss, Inc. [source] ERP correlates of online monitoring of auditory feedback during vocalizationPSYCHOPHYSIOLOGY, Issue 6 2009Colin S. Hawco Abstract When speakers hear the fundamental frequency (F0) of their voice altered, they shift their F0 in the direction opposite the perturbation. The current study used ERPs to examine sensory processing of short feedback perturbations during an ongoing utterance. In one session, participants produced a vowel at an F0 of their own choosing. In another session, participants matched the F0 of a cue voice. An F0 perturbation of 0, 25, 50, 100, or 200 cents was introduced for 100 ms. A mismatch negativity (MMN) was observed. Differences between sessions were only found for 200-cent perturbations. Reduced compensation when speakers experienced the 200-cent perturbations suggests that this larger perturbation was perceived as externally generated. The presence of an MMN, and no earlier (N100) response suggests that the underlying sensory process used to identify and compensate for errors in mid-utterance may differ from feedback monitoring at utterance onset. [source] Acoustic Analysis of the Voice in Pediatric Cochlear Implant Recipients: A Longitudinal Study,THE LARYNGOSCOPE, Issue 6 2005FRCSC, P Campisi MSc Abstract Objective: To characterize inherent acoustic abnormalities of the deaf pediatric voice and the effect of artificially restoring auditory feedback with cochlear implantation. Design: Inception cohort. Setting: Academic referral center. Patients: Twenty-one children with severe to profound hearing loss (15 prelingually deaf, 6 postlingually deaf) accepted into the cochlear implant program were followed for up to 6 months. Patients unable to perform the vocal exercises were excluded. Interventions: Objective voice analysis was performed using the Computerized Speech Laboratory (Kay Elemetrics) prior to cochlear implantation, at the time of implant activation and at 2 and 6 months postactivation. Assessments were based on sustained phonations and dynamic ranges. Main Outcome Measure: Fundamental frequency, long-term control of fundamental frequency (vF0) and long-term control of amplitude (vAM) were derived from sustained phonations. The dynamic frequency range was derived from scale exercises. Formant frequencies (F1, F2, F3) were determined using linear predictive coding. Results: Fundamental frequency was not altered by implant activation or experience (P = 0.342). With profoundly deaf subject, the most prevalent acoustic abnormality was a poor long-term control of frequency (vF0, 2.81%) and long-term control of amplitude (vAm, 23.58%). Implant activation and experience had no effect on the long-term control of frequency (P = 0.106) but normalized the long-term control of amplitude (P = 0.007). The mean frequency range increased from 311.9 Hz preimplantation to 483.5 Hz postimplantation (P = 0.08). The F1/F2 ratio remained stable (P = 0.476). Conclusion: In children, severe to profound deafness results in poor long-term control of frequency and amplitude. Cochlear implantation restores control of amplitude only and implies the need for additional rehabilitative strategies for restoration of control of frequency. [source] |