Home About us Contact | |||
Relative Preservation (relative + preservation)
Selected AbstractsEarly-onset Alzheimer's disease with presenilin-1 M139V mutation: clinical, neuropsychological and neuropathological studyEUROPEAN JOURNAL OF NEUROLOGY, Issue 3 2003A. J. Larner The clinical, neuropsychological and neuropathological features of a patient with early-onset Alzheimer's disease as a result of the M139V presenilin-1 (PSEN-1) mutation are presented, and compared with previous reports of patients with the same mutation. Similarities, such as the age at onset and the relative preservation of naming skills, and differences, such as the significant basal ganglia, thalamic and cerebellar pathology, are noted. This clinical and pathological heterogeneity in patients with the same PSEN-1 mutation suggests phenotype modulation by genetic and/or epigenetic factors. [source] The role of the medial temporal lobe in autistic spectrum disordersEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005C. H. Salmond Abstract The neural basis of autistic spectrum disorders (ASDs) is poorly understood. Studies of mnemonic function in ASD suggest a profile of impaired episodic memory with relative preservation of semantic memory (at least in high-functioning individuals). Such a pattern is consistent with developmental hippocampal abnormality. However, imaging evidence for abnormality of the hippocampal formation in ASD is inconsistent. These inconsistencies led us to examine the memory profile of children with ASD and the relationship to structural abnormalities. A cohort of high-functioning individuals with ASD and matched controls completed a comprehensive neuropsychological memory battery and underwent magnetic resonance imaging for the purpose of voxel-based morphometric analyses. Correlations between cognitive/behavioural test scores and quantified results of brain scans were also carried out to further examine the role of the medial temporal lobe in ASD. A selective deficit in episodic memory with relative preservation of semantic memory was found. Voxel-based morphometry revealed bilateral abnormalities in several areas implicated in ASD including the hippocampal formation. A significant correlation was found between parental ratings reflecting autistic symptomatology and the measure of grey matter density in the junction area involving the amygdala, hippocampus and entorhinal cortex. The data reveal a pattern of impaired and relatively preserved mnemonic function that is consistent with a hippocampal abnormality of developmental origin. The structural imaging data highlight abnormalities in several brain regions previously implicated in ASD, including the medial temporal lobes. [source] Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degenerationNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2006A. Shimada The SAMP10 mouse is a model of accelerated ageing in which senescence is characterized by age-related atrophy of the cerebral cortex and limbic structures, poor learning and memory task performance with depressive behaviour and cholinergic and dopaminergic alterations. Here we studied age-related changes in the dendritic arbors and spine density of pyramidal cells in the medial prefrontal cortex of SAMP10 mice using a quantitative Golgi method. Dendrites of prefrontal neurones gradually retracted with ageing towards the soma with the relative preservation of overall complexity. Apical dendrites were much more severely affected than basal dendrites. The combined length of the apical dendrites and spine density were decreased by 45% and 55%, respectively, in mice at 12 months, compared with mice at 3 months of age. Immunohistochemical and immunoblot analyses indicated that expression of microtubule-associated protein (MAP) 2, a marker of dendrites, decreased in an age-related manner not only in the anterior cortex but also in the posterior cortex and olfactory structures in SAMP10 mice. Decreased expression of MAP2 mRNA caused the decrease in MAP2 protein expression. These results suggest that retraction of apical, but not of basal dendrites, with a loss of spines in prefrontal neurones, appears to be responsible for poor learning and memory performance in aged SAMP10 mice. It is also suggested that age-related dendritic retraction occurs in a wide area including the entire cerebral cortex and olfactory structures. [source] Diameter of the Cochlear Nerve in Endolymphatic Hydrops: Implications for the Etiology of Hearing Loss in Ménière's Disease,THE LARYNGOSCOPE, Issue 9 2005Cliff A. Megerian MD Abstract Objective/Hypothesis: Endolymphatic hydrops (ELH) is an important histopathological hallmark of Ménière's disease. Experimental data from human temporal bones as well as animal models of the disorder have generally failed to determine the mechanism by which ELH or related pathology causes hearing loss. Hair cell and spiral ganglion cell counts in both human and animal case studies have not, for the most part, shown severe enough deterioration to explain associated severe sensorineural hearing loss. However a limited number of detailed ultrastructural studies have demonstrated significant reductions in dendritic innervation densities, raising the possibility that neurotoxicity plays an important role in the pathology of Ménière's disease (MD) as well as experimental endolymphatic hydrops (ELH). This study tests the hypothesis that neurotoxicity is an important primary mediator of injury to the hydropic ear and is reflected in measurable deterioration of the cochlear nerve in the animal model of ELH. This study also explores the previously presented hypothesis that cochlear injury in ELH is mediated through the actions of nitric oxide (NO) by evaluating whether hearing loss or various measures of cochlear damage can be ameliorated by administration of an agent that limits excess production of NO. Study Design: Part one of the project involves the surgical induction of endolymphatic hydrops and correlation of long term hearing loss with histological parameters of ELH severity as well as cochlear nerve and eighth cranial nerve diameter measurements. In part two, aminoguanidine is administered orally to a separate set of hydropic animals in an attempt to limit cochlear injury presumably mediated by NO. Methods: Guinea pigs are subjected to surgical induction of unilateral endolymphatic hydrops after establishing baseline ABR thresholds at 2, 4, 8, 16, and 32 kHz. Threshold shifts are established prior to sacrifice at 4 to 6 months and temporal bones processed for light microscopy. Measurements of cochlear nerve and eighth cranial nerve maximal diameters as well as average maximal diameters are carried out and correlated to hearing loss and a semi-quantitative measure of hydrops severity. The identical experiments are carried out in animals treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase. Results: The mean maximal diameter (n = 14) of the hydropic cochlear nerve was significantly reduced (432.14 ± 43.18 vs. 479.28 ± 49.22 microns, P = .0025) as compared to the control nerve. This was also seen in measures of the eighth cranial nerve (855.71 ± 108.82 vs. 929 ± 81.53 microns, P = 0.0003). Correlation studies failed to show correlation between hydrops severity and a cochlear nerve deterioration index (r = -0.0614, P = .8348). Similarly, hearing loss severity failed to correlate with cochlear nerve deterioration (r = 0.1300, P = .6577). There was a significant correlation between hearing loss and hydrops severity (r = 0.6148, P = .0193). Aminoguanidine treated animals (n = 5) also sustained nerve deterioration to the same degree as non-treated animals and there appeared to be no protective effect (at the dosage administered) against ELH related hearing loss, hydrops formation, or nerve deterioration. Conclusion: ELH results in significant deterioration of cochlear nerve and eighth cranial nerve maximal diameters in the guinea pig model. These findings are in accord with previous studies which detected ultrastructural evidence of dendritic damage and indicate that neural injury is of sufficient severity to result in light microscopic evidence of cochlear nerve and eighth cranial nerve deterioration. These data support the concept that the principle pathological insult in ELH is a form of neurotoxicity, especially in light of previous studies which indicate relative preservation of hair cells at similar points in time. The lack of correlation between the severity of hydrops and nerve deterioration suggests that nerve deterioration is independent of hydrops severity. [source] Increased gyrification in Williams syndrome: evidence using 3D MRI methodsDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 5 2002J Eric Schmitt BABS Understanding patterns of gyrification in neurogenetic disorders helps to uncover the neurodevelopmental etiology underlying behavioral phenotypes. This is particularly true in Williams syndrome (WS), a condition caused by de novo deletion of approximately 1 to 2Mb in the 7q11.23 region. Individuals with WS characteristically possess an unusual dissociation between deficits in visual-spatial ability and relative preservations in language, music, and social drive. A preliminary postmortem study reported anomalous gyri and sulci in individuals with WS. The present study examined gyrification patterns in 17 participants with WS (10 females, 7 males; mean age 28 years 11 months, SD 8 years 6 months) and 17 age- and sex-matched typically developing control participants (mean age 29 years 1 month, SD 8 years 1 month) using new automated techniques in MRI. Significantly increased cortical gyrification was found globally with abnormalities being more marked in the right parietal (p=0.0227), right occipital (p=0.0249), and left frontal (p=0.0086) regions. These results suggest that one or more genes in the 7q11.23 region are involved during the critical period when cortical folding occurs, and may be related to the hypothesized dorsal/ventral dissociation in this condition. [source] |