Home About us Contact | |||
Relative Bioavailability (relative + bioavailability)
Selected AbstractsIntracellular and plasma steady-state pharmacokinetics of raltegravir, darunavir, etravirine and ritonavir in heavily pre-treated HIV-infected patientsBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 5 2010Rob Ter Heine WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , The combination of raltegravir, etravirine and ritonavir boosted darunavir is a potent antiretroviral regimen for patients who have been heavily pre-treated for HIV-infection. All these agents have to exert their action intracellularly. However, only little is known about the cellular pharmacology of these agents. WHAT THIS STUDY ADDS , We investigated the steady-state plasma and cellular pharmacokinetics of raltegravir, etravirine, darunavir and ritonavir and the observed distinct intracellular accumulation ratios indicated that these antiretroviral drugs have different affinity for the cellular compartment. AIM To study the steady-state plasma and intracellular pharmacokinetics of raltegravir, etravirine, darunavir and ritonavir in heavily pre-treated patients. METHODS Patients on a salvage regimen containing raltegravir, etravirine, darunavir and ritonavir were eligible for inclusion. During a 12 h dosing interval plasma and peripheral blood mononuclear cells were collected. Drug concentrations were measured using a validated LC-MS/MS assay and pharmacokinetic analysis was performed using non-linear mixed effect modelling. RESULTS Irregular absorption was observed with raltegravir and darunavir, which may be caused by enterohepatic cycling. Relative bioavailability of ritonavir was low, when compared with other ritonavir regimens. Raltegravir plasma pharmacokinetics showed wide interpatient variability, while intracellular raltegravir concentrations could not be detected (<0.001 mg l,1 in cell lysate). The intracellular to plasma ratios for etravirine, darunavir and ritonavir were 12.9, 1.32 and 7.72, respectively, and the relative standard error of these estimates were 16.3%, 12.3% and 13.0%. CONCLUSIONS The observed distinct intracellular accumulation indicated that these drugs have different affinity for the cellular compartment. The relatively high intracellular accumulation of etravirine may explain its efficacy and its previously described absence of PK,PD relationships in the therapeutic concentration range, when compared with other non-nucleoside reverse transcriptase inhibitors. Lastly, the intracellular concentrations of ritonavir seem sufficient for inhibition of viral replication in the cellular compartment in PI-naive patients, but not in patients with HIV harbouring PI resistance. [source] Liquid chromatography with electrospray ionization mass spectrometry method for the assay of glucosamine sulfate in human plasma: validation and application to a pharmacokinetic studyBIOMEDICAL CHROMATOGRAPHY, Issue 3 2006Tao-Min Huang Abstract A liquid chromatography,electrospray ionization mass spectrometry (LC,ESI,MS) method was developed and validated for the assay of glucosamine sulfate in human plasma. Plasma proteins were precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was transferred and derivatized with phenyl iso-thiocyanate in acetonitrile at 60°C for 40 min. Chromatographic separation was performed on a C18 column (Inertsil ODS-3 150 × 2.1 mm i.d., 5 µm, JP) with a mobile phase gradient consisting of 0.2% acetic acid (aqueous) and methanol at a flow-rate of 0.3 mL/min. MS detection using electrospray ionization (ESI) as an interface was used in single ion monitoring mode to determine positive ions at m/z 297. This method was shown to be selective and sensitive for glucosamine sulfate. The limit of detection was 35 ng/mL for glucosamine sulfate in plasma and the linear range was 0.1,20 µg/mL in plasma with a correlation coefficient (r) of 0.9991. The relative standard deviations (RSDs) of intra-day and inter-day assays were 8.7,11.4 and 9.8,12.6%, respectively. Extraction recoveries of glucosamine sulfate in plasma were greater than 73%. This method proved to be simple, reproducible and feasible for pharmacokinetic studies of glucosamine sulfate in healthy volunteers after a single oral administration (1500 mg). The pharmacokinetic parameters and relative bioavailabilities were investigated for both domestic glucosamine sulfate tablet and capsule preparations compared with an imported capsule product. Copyright © 2005 John Wiley & Sons, Ltd. [source] In vitro bioaccessibility of iron and zinc in fortified fruit beveragesINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2009Antonio Cilla Summary Iron and zinc bioaccessibility was estimated in the in vitro gastrointestinal digests of six different fortified fruit beverages (Fb) containing iron and/or zinc and/or skimmed milk (M). Solubility values can be used to establish trends in relative bioavailability of iron and zinc, as the first stage towards mineral bioavailability comprises solubility in the intestinal tract. FbFe, FbFeM and FbFeZnM samples showed iron bioaccessibility above 88%, differing (P < 0.05) from those of FbFeZn (53%). In turn, FbZn, FbFeZn and FbZnM samples presented higher zinc bioaccessibility (above 68%), differing (P < 0.05) from those of FbFeZnM (48%). The presence of milk-derived caseinophosphopeptides (CPPs) formed during gastrointestinal digestion in dairy samples does not increase iron or zinc bioaccessibility in FbFeM or FbZnM vs. FbFe or FbZn, but it is hypothesised that the negative interacting effect of zinc upon iron bioaccessibility when co-supplemented in these fruit beverages is overcome in the presence of CPPs, which favour iron solubility more than in the case of zinc. [source] Antimalarial drug quality in AfricaJOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 5 2007A. A. Amin PhD Abstract Background and objective: There are several reports of sub-standard and counterfeit antimalarial drugs circulating in the markets of developing countries; we aimed to review the literature for the African continent. Methods: A search was conducted in PubMed in English using the medical subject headings (MeSH) terms: ,Antimalarials/analysis'[MeSH] OR ,Antimalarials/standards'[MeSH] AND ,Africa'[MeSH]' to include articles published up to and including 26 February 2007. Data were augmented with reports on the quality of antimalarial drugs in Africa obtained from colleagues in the World Health Organization. We summarized the data under the following themes: content and dissolution; relative bioavailability of antimalarial products; antimalarial stability and shelf life; general tests on pharmaceutical dosage forms; and the presence of degradation or unidentifiable impurities in formulations. Results and discussion: The search yielded 21 relevant peer-reviewed articles and three reports on the quality of antimalarial drugs in Africa. The literature was varied in the quality and breadth of data presented, with most bioavailability studies poorly designed and executed. The review highlights the common finding in drug quality studies that (i) most antimalarial products pass the basic tests for pharmaceutical dosage forms, such as the uniformity of weight for tablets, (ii) most antimalarial drugs pass the content test and (iii) in vitro product dissolution is the main problem area where most drugs fail to meet required pharmacopoeial specifications, especially with regard to sulfadoxine,pyrimethamine products. In addition, there are worryingly high quality failure rates for artemisinin monotherapies such as dihydroartemisinin (DHA); for instance all five DHA sampled products in one study in Nairobi, Kenya, were reported to have failed the requisite tests. Conclusions: There is an urgent need to strengthen pharmaceutical management systems such as post-marketing surveillance and the broader health systems in Africa to ensure populations in the continent have access to antimalarial drugs that are safe, of the highest quality standards and that retain their integrity throughout the distribution chain through adequate enforcement of existing legislation and enactment of new ones if necessary, and provision of the necessary resources for drug quality assurance. [source] In vivo absorption of steroidal hormones from smart polymer based delivery systemsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2010Sibao Chen Abstract The purpose of this study was to develop smart polymer based controlled delivery systems to deliver steroidal hormones after single subcutaneous (s.c.) injection at predetermined rates over extended period of time. In vivo absorption and pharmacokinetics of levonorgestrel (LNG) and testosterone (TSN) were investigated from the thermosensitive and phase sensitive polymeric controlled delivery systems. A selective, reliable, and rapid method for determination of serum LNG concentration was developed using high-performance liquid chromatography,tandom mass spectrometry with atmospheric pressure chemical ionization interface (HPLC,MS,MS with APCI), while TSN in serum samples was detected and quantified by a competitive immunoassay. The delivery systems controlled the absorption of LNG in rabbits up to 6 weeks from thermosensitive and ,4 weeks from phase sensitive polymeric delivery systems. In vivo study of TSN delivery systems in castrated rabbits controlled the release of TSN for at least 2 months from both thermosensitive and phase sensitive polymers. Thermosensitive and phase sensitive polymer formulations significantly (p,<,0.05) increased relative bioavailability of steroidal hormones compared to control. In conclusion, thermosensitive and phase sensitive polymer based delivery systems controlled the release in vivo in rabbits for longer duration after single s.c. injection. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3381,3388, 2010 [source] Bioavailability of generic ritonavir and lopinavir/ritonavir tablet products in a dog modelJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2010Kevin W. Garren Abstract In this study, we explored the bioavailability in dogs and chemical potency of generic ritonavir and lopinavir/ritonavir tablet products manufactured by various pharmaceutical companies. Chemical potency of the products was examined by HPLC quantitation of ritonavir and lopinavir. Using a dog model, we determined point estimates for Cmax and AUC of ritonavir and lopinavir/ritonavir for eight generic products compared to Abbott's Norvir® capsule and Kaletra® tablet. Chemical potencies ranged from 79.0% to 104.6%. Point estimates for AUC in the generic tablet products ranged from 0.01 to 1.11, indicating that the relative bioavailability of these formulations was in the range of 1,111% compared to the branded products. This study showed significant variability in bioavailability in a dog model amongst generic tablet products containing the protease inhibitors ritonavir or lopinavir/ritonavir. The chemical potency of the generic products was not indicative of the plasma levels of ritonavir or lopinavir that were achieved. These results reinforce the need for human bioequivalence testing of generic products containing ritonavir or lopinavir/ritonavir to assure that efficacy in patients is not compromised prior to these products being made available to patients. Procurement policies of funding agencies should require such quality assurance processes. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:626,631, 2010 [source] Enhancing the oral bioavailability of the poorly soluble drug dicumarol with a bioadhesive polymerJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2003Chris G. Thanos Abstract This article investigates the effect of particle size and the incorporation of a bioadhesive polymer, poly(fumaric- co -sebacic) anhydride p(FA:SA), on the relative bioavailability of dicumarol. A novel method was used to reduce particle size of the drug, and encapsulated formulations were fabricated using a phase inversion technique to produce nanospheres and microspheres with varying size. Groups of Yorkshire swine were catheterized and gavaged after fasting for 12 h with each formulation in a 50 mg/mL suspension. Blood was collected at different time points, from 0 to 96 h, and pharmacokinetic analysis revealed that formulations incorporating the smaller drug particles showed the highest bioavailability: micronized drug with 7% p(FA:SA) 17:83 polymer had 190% relative bioavailability, and phase inverted p(FA:SA) 17:83 microspheres with 31% (w/w) loading had 198% relative bioavailability to spray dried formulation. Formulations with larger drug particles achieved 71% relative bioavailability. A nonadhesive formulation, fabricated with poly(lactic acid) (PLA), showed 91% relative bioavailability. Both particle size and polymer composition play a role in oral absorption of dicumarol. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:1677,1689, 2003 [source] Effect of chitosan on the intranasal absorption of salmon calcitonin in sheepJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2005Michael Hinchcliffe The effects of a chitosan-based delivery system on the pharmacokinetics of intranasally administered salmon calcitonin (sCT) were investigated in a sheep model. In particular, the feasibility of producing a formulation with a comparable or improved bioavailability and/or less variability than the currently marketed nasal product (Miacalcin nasal spray, Novartis Pharmaceuticals) was assessed. A comparator (control) formulation comprising sCT solution was also tested. Sheep (n = 6) were dosed intranasally according to a randomized crossover design. The intranasal sCT dose was 1100 IU (equivalent to approximately 17 IU kg,1). After completion of the nasal dosing legs, five of the sheep received 300 IU sCT (equivalent to approximately 5 IU kg,1) by subcutaneous injection to estimate relative bioavailability. After intranasal or subcutaneous dosing, serial blood samples were taken and plasma separated by centrifugation before measuring sCT concentrations by ELISA. Pharmacokinetic (non-compartmental) and statistical (analysis of variance or non-parametric alternative) analyses were performed. No systemic or local adverse effects were observed following intranasal or subcutaneous administration of sCT. The mean relative bioavailability of sCT from the chitosan solution was improved twofold compared with Miacalcin nasal spray and threefold compared with sCT control solution. Inter-animal variability in sCT absorption appeared to be lower with use of the chitosan-based solution compared with the control solution or commercial product. Based on the reported sheep data, a chitosan delivery system could offer the potential to significantly improve the intranasal absorption of sCT and reduce the variability in absorption. In the clinical setting, this may allow relatively lower doses of the drug to be given intranasally and/or lead to improvements in the efficacy or quality of intranasal therapy. [source] Relative oral bioavailability of microgranulated amoxicillin in pigsJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2002P. Anfossi A new microgranulated formulation of amoxicillin trihydrate for in-feed medication was developed using a lipogelled matrix. Its relative bioavailability was compared with powdered drug in pigs and an assessment was made to determine whether therapeutic concentrations were achieved. Microgranules containing 10% (MICR10) and 30% (MICR30) amoxicillin and free amoxicillin trihydrate powder (reference, AMX) were administered at dosages of 50 mg of amoxicillin/kg b.w. using a three-way-crossover design. Amoxicillin analysis in serum was performed by a sensitive high performance liquid chromatography (HPLC) method with fluorometric detection, using an extraction procedure already described for edible tissues of fish and adapted and validated for pig serum. The oral bioavailability of both microgranulated formulations was higher than that of the reference formulation [relative bioavailability (F): 153.9 ± 58.2% for MICR10; 126.2 ± 70.5% for MICR30] and the area under the concentration,time curve (AUC) values of MICR10 and AMX formulations were significantly different (P < 0.05). Differences between the mean maximum concentration (Cmax), time of Cmax (tmax) and mean residence time (MRT) of the drug formulations were not significant. Microgranulated amoxicillin is suitable for in-feed administration to pigs and, because of its higher oral bioavailability compared with the powdered compound, it may be more effective for the treatment of susceptible infections. [source] Use of ferrous fumarate to fortify foods for infants and young childrenNUTRITION REVIEWS, Issue 9 2010Richard Hurrell Ferrous fumarate is currently recommended for use in the fortification of foods for infants and young children. This recommendation is based on the compound's good sensory properties and on results from isotope studies in adults that reported similar iron absorption values for ferrous fumarate and ferrous sulphate (relative bioavailability [RBV] of ferrous fumarate, 100). However, later isotope studies conducted on both iron-replete and iron-deficient young children found that iron absorption from ferrous fumarate was only about 30% of that achieved from ferrous sulphate (RBV, 30). The reasons for the differences observed in adults compared with children are unclear but could be related to the following factors: lower iron status in children resulting in greater iron absorption via upregulation from ferrous sulphate but not from ferrous fumarate; reduced gastric acid secretion in children leading to retarded dissolution of ferrous fumarate; or an influence of added ascorbic acid on RBV. Ferrous fumarate-fortified complementary foods have been demonstrated to improve iron status in iron-deficient infants and, more recently, to prevent iron deficiency equally as well as ferrous sulphate in iron-replete infants. However, current evidence indicates that iron-deficient infants and young children may absorb iron from ferrous fumarate less well than iron from ferrous sulfate and that, for equivalent efficacy, complementary foods targeted at such infants and young children should contain more iron in the form of fumarate. [source] The assessment of human regional drug absorption of free acid and sodium salt forms of Acipimox, in healthy volunteers, to direct modified release formulation strategyBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2009Rajeev Menon Abstract Acipimox is an analog of nicotinic acid and is indicated for the treatment of dyslipidemia. It is also believed to improve glucose control by enhancing insulin sensitivity. The purpose of this study was to direct modified release (MR) formulation strategy by comparing the bioavailability of two forms of acipimox (free acid and sodium salt) from the distal small bowel (DSB) and colon with an immediate release formulation. Two parallel groups of healthy volunteers completed an open label, non-randomized, three-way crossover study. The rate and extent of acipimox absorption was highest following administration of the immediate release capsules, and was not influenced by the form of the drug administered. Following administration to the DSB, the relative bioavailability was approximately 52% and 30% for the salt form and free acid form, respectively. Following administration to the colon, the extent of absorption was further reduced. The data indicate that bioavailability from the DSB was limited by the solubility of the drug coupled with an absorption window, whilst absorption from the colon was limited by permeability. The study provided detailed information to support and guide the formulation strategy for a MR form of acipimox, which may improve the treatment of adult patients with type II diabetes and dyslipidemia. Copyright © 2009 John Wiley & Sons, Ltd. [source] Effects of oral epigallocatechin gallate on the oral pharmacokinetics of verapamil in ratsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 2 2009Joong-Hwa Chung Abstract Verapamil is known to be a P-glycoprotein (P-gp) substrate and norverapamil is formed via hepatic cytochrome P450 (CYP 3A) in the rat. Epigallocatechin gallate (EGCG), a flavonoid, was reported to be an inhibitor of both P-gp and CYP3A. Hence, it could be expected that EGCG could alter the pharmacokinetics of verapamil. In this study, 9,mg/kg verapamil was administered orally to Sprague,Dawley rats 30,min after the oral administration of 2 and 10,mg/kg of oral EGCG. Compared with the controls, the AUC values of both verapamil (74.3% and 111% increase for 2 and 10,mg/kg EGCG, respectively) and norverapamil (51.5% and 87.2% increase for 2 and 10,mg/kg EGCG, respectively) were significantly greater in the presence of EGCG. However, compared with the controls, both the AUC and the relative bioavailability of verapamil were significantly (p<0.01) increased by 74.3,111% in the presence of EGCG. The likely explanation is inhibition of P-gp. Inhibition of CYP3A would increase the AUC of verapamil but decrease the AUC of norverampil. However, inhibition of P-gp would lead to an increase of AUC of both verapamil and norverapamil. Copyright © 2009 John Wiley & Sons, Ltd. [source] Bioavailability of divalproex extended-release formulation relative to the divalproex delayed-release formulationBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 8 2004Sandeep Dutta Abstract Divalproex sodium extended-release tablet (divalproex-ER) is a novel formulation of the conventional divalproex sodium delayed-release tablet (divalproex). In five multiple-dose studies in healthy subjects (n=82) and epilepsy patients (n=86) the estimates of divalproex-ER/divalproex ratios for steady-state 24 h valproic acid area under the curve (AUC) central values, maximum concentration (Cmax) central values and minimum concentration (Cmin) means had ranges of 0.77,0.97, 0.71,0.87 and 0.78,1.03, respectively. These studies used different divalproex regimens (two, three or four times daily) and meal conditions (fasting, low, medium and high calorie meals). Divalproex-ER was administered once daily. A meta-analysis of divalproex-ER/divalproex relative bioavailability across five studies under different meal conditions and divalproex dosing frequencies was performed. This meta-estimate of relative bioavailability was used to provide dosing recommendations for conversion of patients from divalproex to divalproex-ER. The estimated AUC, Cmax and Cmin divalproex-ER/divalproex ratios (95% confidence interval) were 0.89 (0.85,0.94), 0.79 (0.74,0.84) and 0.96 (0.90,1.02), respectively. The food and divalproex regimen had no effect on the relative bioavailability. While switching from divalproex to divalproex-ER, the divalproex-ER daily dose may have to be increased by an average of 12% (calculated as 1.0/0.89) to achieve comparable plasma exposure. Since the divalproex-ER dosage strengths (250 and 500 mg) are not 12% higher than the divalproex dosage strengths (125, 250 and 500 mg), an 8% to 20% higher divalproex-ER daily dose should be considered for conversion from divalproex to divalproex-ER. Copyright © 2004 John Wiley & Sons, Ltd. [source] Bioequivalence assessment of Azomycin® (Julphar, UAE) as compared to Zithromax® (Pfizer, USA),two brands of azithromycin,in healthy human volunteersBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 1 2001Naji M. Najib Abstract Two studies have been performed to assess the relative bioavailability of Azomycin® (Julphar, UAE) as compared with Zithromax® (Pfizer, USA) at the International Pharmaceutical Research Center (IPRC), Amman, Jordan. One study involved Azomycin® capsules and the other Azomycin® suspension. Each study enrolled 24 volunteers and in both studies, after an overnight fasting, the two brands of azithromycin were administered as single dose on two treatment days separated by a 2 weeks washout period. After dosing, serial blood samples were collected for a period of 192 h. Plasma harvested from blood, was analysed for azithromycin by HPLC coupled with electrochemical detection. Various pharmacokinetic parameters including AUC0,t, AUC0,,,Cmax, Tmax, T1/2 and Kelm were determined from plasma concentrations for both formulations and found to be in good agreement with the reported values. AUC0,t, AUC0,, and Cmax were tested for bioequivalence after log-transformation of data. No significant difference was found based on ANOVA; 90% confidence intervals for the test/reference ratios of these parameters were found within the bioequivalence acceptance range of 80,125%. Based on these statistical inferences it was concluded that Azomycin® capsule is bioequivalent to Zithromax® capsule and Azomycin® suspension is bioequivalent to Zithromax® suspension. Copyright © 2001 John Wiley & Sons, Ltd. [source] In vivo comparison of the relative systemic bioavailability of fluticasone propionate from three anti-static spacers and a metered dose inhalerBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2 2009Arun Nair WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , Conventional spacers help overcome problems with co-ordination and may improve lung deposition and decrease oropharyngeal impaction. , Antistatic spacers eliminate electrostatic charge and may hence improve respirable dose delivery. , The systemic bioavailability of inhaled fluticasone propionate is primarily dependent on delivery by the pulmonary route and hence the performance of antistatic spacers can be evaluated using adrenal suppression as a sensitive surrogate for relative bioavailability to the lung after an inhalation. WHAT THIS STUDY ADDS , This study compares the relative bioavailability to the lung of inhaled fluticasone delivered via conventional pressurized metered dose inhalers (pMDI) and three antistatic spacers (plastic Zerostat-V, plastic Aerochamber Max, and metal Nebuchamber) in patients with asthma. , All three antistatic spacers when compared with pMDI significantly increased the relative bioavailability to the lungs of inhaled fluticasone in terms of relative adrenal suppression, and there were no significant differences between the plastic and metal antistatic spacers. AIMS The systemic bioavailability of inhaled fluticasone propionate (FP) depends primarily on lung absorption and can be quantified by measuring suppression of overnight and early morning urinary cortisol/creatinine (OUCC and EMUCC, respectively). The aim of the study was to determine the relative bioavailability of hydrofluoroalkane (HFA) FP to the lungs via anti-static plastic (Zerostat-V and Aerochamber Max), metal (Nebuchamber) anti-static spacers and metered dose inhaler [Flixotide Evohaler (EH) (pMDI)]. METHODS A randomized, double-blind, double-dummy, four-way crossover design was used. Eighteen mild to moderate asthmatics received single doses of placebo/HFA-FP 2 mg via the 280-ml Zerostat-V (ZS); 250-ml Nebuchamber (NC); 197-ml Aerochamber Max (AC); and pMDI (EH). Measurements of OUCC and EMUCC were made at baseline and 10 h after each dose. RESULTS Significant suppression of OUCC and EMUCC occurred from baseline with all three spacers, but not Evohaler (geometric mean fold suppression, 95% confidence interval): ZS, 2.74 (1.75, 4.30), P < 0.001; NC, 3.31 (1.81, 6.06), P < 0.001; AC, 4.98 (3.39, 7.31), P < 0.001; and for EH this was 1.42 (0.92, 2.21), P= 0.169 (equating to a 64, 70, 80 and 30% fall in OUCC via the ZS, NC, AC and EH devices, respectively). There were significant differences between all three spacers vs. EH. When compared with the Evohaler, the Zerostat V resulted in 48% greater suppression (P= 0.009); the Nebuchamber 57% greater suppression (P= 0.001); and the Aerochamber Max 71% greater suppression of OUCC (P < 0.001). CONCLUSION All three antistatic spacers significantly increased the relative systemic bioavailability of HFA-FP compared with the standard pMDI. [source] Population pharmacokinetics of darbepoetin alfa in healthy subjectsBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 1 2007Balaji Agoram Aim To develop and evaluate a population pharmacokinetic (PK) model of the long-acting erythropoiesis-stimulating protein, darbepoetin alfa in healthy subjects. Methods PK profiles were obtained from 140 healthy subjects receiving single intravenous and/or single or multiple subcutaneous doses of darbepoetin alfa (0.75,8.0 µg kg,1, or either 80 or 500 µg). Data were analysed by a nonlinear mixed-effects modelling approach using NONMEM software. Influential covariates were identified by covariate analysis emphasizing parameter estimates and their confidence intervals, rather than stepwise hypothesis testing. The model was evaluated by comparing simulated profiles (obtained using the covariate model) to the observed profiles in a test dataset. Results The population PK model, including first-order absorption, two-compartment disposition and first-order elimination, provided a good description of data. Modelling indicated that for a 70-kg human, the observed nearly twofold disproportionate dose,exposure relationship at the 8.0 µg kg,1 -dose relative to the 0.75 µg kg,1 -dose may reflect changing relative bioavailability, which increased from ,,48% at 0.75 µg kg,1 to 78% at 8.0 µg kg,1. The covariate analysis showed that increasing body weight may be related to increasing clearance and central compartment volume, and that the absorption rate constant decreased with increasing age. The full covariate model performed adequately in a fixed-effects prediction test against an external dataset. Conclusion The developed population PK model describes the inter- and intraindividual variability in darbepoetin alfa PK. The model is a suitable tool for predicting the PK response of darbepoetin alfa using clinically untested dosing regimens. [source] Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteersBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 2 2001Michael G. Hall Aims NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione (2-(4-methylsulphonyl-2-nitrobenzoyl)-1,3-cyclohexanedione) are inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD). NTBC has been successfully used as a treatment for hereditary tyrosinaemia type 1 (HT-1), while mesotrione has been developed as an herbicide. The pharmacokinetics of the two compounds were investigated in healthy male volunteers following single oral administration. The aim of the NTBC study was to assess the bioequivalence of two different formulations and to determine the extent of the induced tyrosinaemia. The mesotrione study was performed to determine the magnitude and duration of the effect on tyrosine catabolism. Additionally, the urinary excretion of unchanged mesotrione was measured to assess the importance of this route of clearance and to help develop a strategy for monitoring occupational exposure. Methods A total of 28 volunteers participated in two separate studies with the compounds. In the first study, the relative bioavailability of NTBC from liquid and capsule formulations was compared and the effect on plasma tyrosine concentrations measured. In the second study the pharmacokinetics of mesotrione were determined at three doses. Plasma tyrosine concentrations were monitored and the urinary excretion of mesotrione and tyrosine metabolites was measured. Results Both compounds were well tolerated at the dose levels studied. Peak plasma concentrations of NTBC were rapidly attained following a single oral dose of 1 mg kg,1 body weight of either formulation and the half-life in plasma was approximately 54 h. There were no statistical differences in mean (± s.d.) AUC(0,,) (capsule 602 ± 154 vs solution 602 ± 146 µg ml,1 h) or t½ (capsule 55 ± 13 vs solution 54 ± 8 h) and these parameters supported the bioequivalence of the two formulations. Mesotrione was also rapidly absorbed, with a significant proportion of the dose eliminated unchanged in urine. The plasma half-life was approximately 1 h and was independent of dose and AUC(0,,) and Cmax increased linearly with dose. Following administration of 1 mg NTBC kg,1 in either formulation, the concentrations of tyrosine in plasma increased to approximately 1100 nmol ml,1. Concentrations were still approximately 8 times those of background at 14 days after dosing, but had returned to background levels within 2 months of the second dose. Administration of mesotrione resulted in an increase in tyrosine concentrations which reached a maximum of approximately 300 nmol ml,1 following a dose of 4 mg kg,1 body weight. Concentrations returned to those of background within 2 days of dosing. Urinary excretion of tyrosine metabolites was increased during the 24 h immediately following a dose of 4 mg mesotrione kg,1, but returned to background levels during the following 24 h period. Conclusions NTBC and mesotrione are both inhibitors of HPPD, although the magnitude and duration of their effect on tyrosine concentrations are very different. When normalized for dose, the extent of the induced tyrosinaemia after administration of NTBC and over the duration of these studies, was approximately 400 fold greater than that following administration of mesotrione. The persistent and significant effect on HPPD following administration of NTBC make it suitable for the treatment of patients with hereditary tyrosinaemia type 1 (HT-1), whilst the minimal and transient effects of mesotrione minimize the likelihood of a clinical effect in the event of systemic exposure occurring during occupational use. [source] Pharmacokinetic,pharmacodynamic modelling of the analgesic effects of lumiracoxib, a selective inhibitor of cyclooxygenase-2, in ratsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2010DA Vįsquez-Bahena Background and purpose:, This study establishes a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the time course and in vivo mechanisms of action of the antinociceptive effects of lumiracoxib, evaluated by the thermal hyperalgesia test in rats. Experimental approach:, Female Wistar fasted rats were injected s.c. with saline or carrageenan in the right hind paw, followed by either 0, 1, 3, 10 or 30 mg·kg,1 of oral lumiracoxib at the time of carrageenan injection (experiment I), or 0, 10 or 30 mg·kg,1 oral lumiracoxib at 4 h after carrageenan injection (experiment II). Antihyperalgesic responses were measured as latency time (LT) to a thermal stimulus. PK/PD modelling of the antinociceptive response was performed using the population approach with NONMEM VI. Results:, A two-compartment model described the plasma disposition. A first-order model, including lag time and decreased relative bioavailability as a function of the dose, described the absorption process. The response model was: LT=LT0/(1 +MED). LT0 is the baseline response, and MED represents the level of inflammatory mediators. The time course of MED was assumed to be equivalent to the predicted profile of COX-2 activity and was modelled according to an indirect response model with a time variant synthesis rate. Drug effects were described as a reversible inhibition of the COX-2 activity. The in vivo estimate of the dissociation equilibrium constant of the COX-2-lumiracoxib complex was 0.24 µg·mL,1. Conclusions:, The model developed appropriately described the time course of pharmacological responses to lumiracoxib, in terms of its mechanism of action and pharmacokinetics. [source] |