Regional Myocardial Blood Flow (regional + myocardial_blood_flow)

Distribution by Scientific Domains


Selected Abstracts


Twenty-Four Hours Postoperative Results After Orthotopic Cardiac Transplantation in Swine

JOURNAL OF CARDIAC SURGERY, Issue 4 2007
Matthias Siepe M.D.
However, there is no functional data available for a longer time period after transplantation. We have established a pig model to investigate myocardial function 24 hours after orthotopic transplantation.Materials and Methods: Orthotopic cardiac transplantations (HTx) in pigs were performed with a postoperative observation period of 24 hours (n = 6). To analyze myocardial function after transplantation, hemodynamical parameters (Swan-Ganz- and impedance-catheter data) as well as tissue and blood samples were obtained. Regional myocardial blood flow (RMBF) was assessed using fluorescent microspheres. Results: The impedance-catheter parameters demonstrated a preserved contractility in both ventricles 24 hours post-transplantation. In contrast, cardiac output 24 hours after HTx was diminished by 50% as compared to the preoperative value. Conversely, pulmonary vascular resistance increased significantly. The RMBF was increased in both ventricles. Metabolic and histological analyses indicate myocardial recovery 24 hours after HTx with no irreversible damage. Conclusions: For the first time, we were able to establish a porcine model to investigate myocardial function 24 hours after heart transplantation. While the contractility of the transplanted hearts was well-preserved, impaired cardiac output was going along with an increase in pulmonary vascular resistance. Using this clinical relevant model, improvements of human cardiac transplantation and post-transplant contractile dysfunction, especially, could be investigated. [source]


The anti-diabetic drug miglitol is protective against anginal ischaemia through a mechanism independent of regional myocardial blood flow in the dog

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2005
Yoshihiro Uno
SUMMARY 1.,In the present study, we attempted to clarify whether the antidiabetic drug miglitol, an ,-glucosidase inhibitor, has a protective effect against anginal ischaemia. We had reported previously that miglitol reduces myocardial infarct size through inhibition of glycogenolysis during ischaemia in rabbits. However, the effect of miglitol on anginal ischaemia remains unknown. 2.,In open-chest beagle dogs with a severely stenosed left anterior descending coronary artery, an epicardial electrode was attached to the surface of the risk area of the left ventricle and a microdialysis probe was implanted into the myocardium to measure ST segment changes and interstitial lactate accumulation. The first episode of anginal ischaemia was induced by atrial pacing and phenylephrine infusion (50,100 µg/min) for 10 min. The second episode of anginal ischaemia was induced 210 min after the first episode. Miglitol (10 mg/kg, i.v.) was administered to the miglitol group (n = 10) 30 min before the second episode of anginal ischaemia, whereas saline was administered to the control group (n = 10). Regional myocardial blood flow was measured using coloured microspheres. 3.,There was no significant difference in regional myocardial blood flow in the risk and non-risk areas between the first and second episodes of anginal ischaemia and between the miglitol and control groups. During the first and second episodes of anginal ischaemia, the ST segment was decreased to a similar extent in the control group. Although ST segment depression during the first episode of anginal ischaemia was similar in both groups, ST segment depression during the second episode of anginal ischaemia was significantly attenuated in the miglitol-treated group compared with the control group (1.3 ± 0.4 vs 2.2 ± 0.4 mV, respectively). Miglitol significantly attenuated myocardial interstitial lactate accumulation in the risk area. 4.,In conclusion, in the present study miglitol improved ST segment depression and attenuated the accumulation of myocardial interstitial lactate during anginal ischaemia without altering regional myocardial blood flow. Miglitol has an anti-anginal ischaemia effect via a mechanism that is independent of regional myocardial blood flow. [source]


In vivo quantification of regional myocardial blood flow: Validity of the fast-exchange approximation for intravascular T1 contrast agent and long inversion time,

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2006
Marlene Wiart
Abstract In the present study we investigated the effects of water exchange between intra- and extravascular compartments on absolute quantification of regional myocardial blood flow (rMBF) using a saturation-recovery sequence with a rather long inversion time (TI, 176 ms) and a T1 -shortening intravascular contrast agent (CMD-A2-Gd-DOTA). Data were acquired in normal and ischemically injured pigs, with radiolabeled microsphere flow measurements used as the gold standard. Five water exchange rates (fast, 6 Hz, 3 Hz, 1 Hz, and no exchange) were tested. The results demonstrate that the fast-exchange approximation may be appropriate for rMBF quantification using the described experimental setting. Relaxation rate change (,R1) analysis improved the accuracy of the analysis of rMBF compared to the MR signal. In conclusion, the current protocol could provide sufficient accuracy for estimating rMBF assuming fast exchange and a linear relationship between signal and tissue concentration when quantification of precontrast T1 is not an option. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source]


The anti-diabetic drug miglitol is protective against anginal ischaemia through a mechanism independent of regional myocardial blood flow in the dog

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2005
Yoshihiro Uno
SUMMARY 1.,In the present study, we attempted to clarify whether the antidiabetic drug miglitol, an ,-glucosidase inhibitor, has a protective effect against anginal ischaemia. We had reported previously that miglitol reduces myocardial infarct size through inhibition of glycogenolysis during ischaemia in rabbits. However, the effect of miglitol on anginal ischaemia remains unknown. 2.,In open-chest beagle dogs with a severely stenosed left anterior descending coronary artery, an epicardial electrode was attached to the surface of the risk area of the left ventricle and a microdialysis probe was implanted into the myocardium to measure ST segment changes and interstitial lactate accumulation. The first episode of anginal ischaemia was induced by atrial pacing and phenylephrine infusion (50,100 µg/min) for 10 min. The second episode of anginal ischaemia was induced 210 min after the first episode. Miglitol (10 mg/kg, i.v.) was administered to the miglitol group (n = 10) 30 min before the second episode of anginal ischaemia, whereas saline was administered to the control group (n = 10). Regional myocardial blood flow was measured using coloured microspheres. 3.,There was no significant difference in regional myocardial blood flow in the risk and non-risk areas between the first and second episodes of anginal ischaemia and between the miglitol and control groups. During the first and second episodes of anginal ischaemia, the ST segment was decreased to a similar extent in the control group. Although ST segment depression during the first episode of anginal ischaemia was similar in both groups, ST segment depression during the second episode of anginal ischaemia was significantly attenuated in the miglitol-treated group compared with the control group (1.3 ± 0.4 vs 2.2 ± 0.4 mV, respectively). Miglitol significantly attenuated myocardial interstitial lactate accumulation in the risk area. 4.,In conclusion, in the present study miglitol improved ST segment depression and attenuated the accumulation of myocardial interstitial lactate during anginal ischaemia without altering regional myocardial blood flow. Miglitol has an anti-anginal ischaemia effect via a mechanism that is independent of regional myocardial blood flow. [source]