Home About us Contact | |||
Regulatory Peptides (regulatory + peptide)
Selected AbstractsPossible role of duration of PKC-induced ERK activation in the effects of agonists and phorbol esters on DNA synthesis in panc-1 cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006Gábor Z. Rácz Abstract Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) have been implicated in the effects of regulatory peptides on proliferation. We studied how ERK was activated by PKC following regulatory peptide or phorbol ester stimulation and we also investigated the effect of ERK activation on proliferation in Panc-1 cells. Panc-1 cells transfected with CCK1 receptors were treated with cholecystokinin (CCK), neurotensin (NT), or phorbol 12-myristate 13-acetate (PMA). DNA synthesis was studied by measuring tritiated thymidine incorporation. PKC isoforms were selectively inhibited with Gö6983 and 200 nM Ro-32-0432, their translocation was detected by confocal microscopy and by subcellular fractionation followed by immunoblotting. ERK cascade activation was detected with phosphoERK immunoblotting and inhibited with 20 µM PD98059. PMA and CCK inhibited, NT stimulated DNA synthesis. These effects were inhibited by Ro-32-0432 but not by Gö6983 suggesting the involvement of PKC, in proliferation control. Confocal microscopy and subcellular fractionation demonstrated that PMA, CCK, and NT caused cytosol to membrane translocation of PKC, and ERK activation that was inhibited by Ro-32-0432 but not by Gö6983. ERK activation was prolonged following PMA and CCK, but transient after NT treatment. PMA, CCK, and NT all activated cyclinD1, while p21CIP1 expression was increased by only PMA and CCK, but not by NT; each of these effects is inhibited by PD98059. In conclusion, our results provide evidence for PKC,-mediated differential ERK activation and growth regulation in Panc-1C cells. Identification of the mechanisms by which these key signaling pathways are modulated could provide a basis for the development of novel therapeutic interventions to treat pancreatic cancer. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] Immunolocalization of Gastrin-Releasing Peptide (GRP) in the Uteroplacenta of the Mouse DeerANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2006J. Kimura Summary The considerable phylogenetical differences between mouse deer and other ruminants have been established by means of DNA sequence analysis and anatomical observations. To clarify the physiological role of the uteroplacenta of the mouse deer, immunohistochemical observation was attempted by using GRP, which has been suggested as a novel regulatory peptide in the female reproductive tract, as an indicator to compare with other ruminants. Strong positive reactions for the GRP were detected in the uterine glands of the pregnant animals, but not in the non-pregnant ones. Although the placenta of the mouse deer is categorized as a diffuse placenta that is different from other ruminants' polycotyledonary placenta, in terms of GRP immunoreactivity, the mouse deer placenta can be classified as a synepithecholial placenta like the other ruminants'. The secretion of GRP from the uterine glands is of some importance to the fetus in the mouse deer. [source] Structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942 complexed with NADPACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2006Kei Wada The crystal structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) from Synechococcus PCC 7942 (S. 7942) in complex with NADP was solved by molecular replacement and refined to an R factor of 19.1% and a free R factor of 24.0% at 2.5,Ĺ resolution. The overall structure of NADP-GAPDH from S. 7942 was quite similar to those of other bacterial and eukaryotic GAPDHs. The nicotinamide ring of NADP, which is involved in the redox reaction, was oriented toward the catalytic site. The 2,-phosphate O atoms of NADP exhibited hydrogen bonds to the hydroxyl groups of Ser194 belonging to the S-loop and Thr37. These residues are therefore considered to be essential in the discrimination between NADP and NAD molecules. The C-terminal region was estimated to have an extremely flexible conformation and to play an important role in the formation of the supramolecular complex phosphoribulokinase (PRK),regulatory peptide (CP12),GAPDH, which regulates enzyme activities. [source] The triakontatetraneuropeptide TTN increases [Ca2+]i in rat astrocytes through activation of peripheral-type benzodiazepine receptorsGLIA, Issue 2 2001Pierrick Gandolfo Abstract Astrocytes synthesize a series of regulatory peptides called endozepines, which act as endogenous ligands of benzodiazepine receptors. We have recently shown that one of these endozepines, the triakontatetraneuropeptide TTN, stimulates DNA synthesis in astroglial cells. The purpose of the present study was to determine the mechanism of action of TTN on cultured rat astrocytes. Binding of the peripheral-type benzodiazepine receptor ligand [3H]Ro5-4864 to intact astrocytes was displaced by TTN, whereas its C-terminal fragment (TTN[17,34], the octadecaneuropeptide ODN) did not compete for [3H]Ro5-4864 binding. Microfluorimetric measurement of cytosolic calcium concentrations ([Ca2+]i) with the fluorescent probe indo-1 showed that TTN (10,10 to 10,6 M) provokes a concentration-dependent increase in [Ca2+]i in cultured astrocytes. Simultaneous administration of TTN (10,8 M) and Ro5-4864 (10,5 M) induced an increase in [Ca2+]i similar to that obtained with Ro5-4864 alone. In contrast, the effects of TTN (10,8 M) and ODN (10,8 M) on [Ca2+]i were strictly additive. Chelation of extracellular Ca2+ by EGTA (6 mM) or blockage of Ca2+ channels with Ni2+ (2 mM) abrogated the stimulatory effect of TTN. The calcium influx evoked by TTN (10,7 M) or by Ro5-4864 (10,5 M) was not affected by the N- and T-type calcium channel blockers ,-conotoxin (10,6 M) and mibefradil (10,6 M), but was significantly reduced by the L-type calcium channel blocker nifedipine (10,7 M). Patch-clamp studies showed that, at negative potentials, TTN (10,7 M) induced a sustained depolarization. Reduction of the chloride concentration in the extracellular solution shifted the reversal potential from 0 mV to a positive potential. These data show that TTN, acting through peripheral-type benzodiazepine receptors, provokes chloride efflux, which in turn induces calcium influx via L-type calcium channels in rat astrocytes. GLIA 35:90,100, 2001. © 2001 Wiley-Liss, Inc. [source] Mechanisms and modulation of intestinal epithelial repairINFLAMMATORY BOWEL DISEASES, Issue 1 2001Dr. Axel U. Dignass Abstract The mucosal epithelium of the alimentary tract represents a crucial barrier to a broad spectrum of noxious and immunogenic substances within the intestinal lumen. An impairment of the integrity of the mucosal epithelial barrier is observed in the course of various intestinal disorders including inflammatory bowel diseases (IBD), celiac disease, intestinal infections, and various other diseases. Furthermore, even under physiologic conditions temporary damage of the epithelial surface mucosa may be caused by proteases, residential flora, dietary compounds, or other factors. Generally, the integrity of the intestinal mucosal surface barrier is rapidly reestablished even after extensive destruction because of an enormous regenerative capability of the mucosal surface epithelium. Rapid resealing of the surface epithelium is accomplished by epithelial cell migration, also termed epithelial restitution, epithelial cell proliferation, and differentiation. Healing of the intestinal surface epithelium is regulated by a complex network of highly divergent factors, among them a broad spectrum of structurally distinct regulatory peptides that have been identified within the mucosa of the intestinal tract. These regulatory peptides, conventionally designated as growth factors and cytokines, play an essential role in regulating differential epithelial cell functions to preserve normal homeostasis and integrity of the intestinal mucosa. In addition, a number of other peptide molecules such as extracellular matrix factors and blood clotting factors, and also nonpeptide molecules including phospholipids, short-chain fatty acids, adenine nucleotides, trace elements, and pharmacological agents, have been demonstrated to modulate intestinal epithelial repair mechanisms. Some of these molecules may be released by platelets, adjacent stromal cells, inflammatory cells, or injured epithelial and nonepithelial cells and may play an important role in the modulation of intestinal injury. Repeated damage and injury of the intestinal surface are key features of various intestinal disorders including IBD and require constant repair of the epithelium. Enhancement of intestinal repair mechanisms by regulatory peptides or other modulatory factors may provide future approaches for the treatment of diseases that are characterized by injuries of the epithelial surface. [source] Immunohistochemical distribution of regulatory peptides in the human fetal adenohypophysisJOURNAL OF ANATOMY, Issue 6 2008R. Reyes Abstract We have studied here the cellular distribution of several regulatory peptides in hormone-producing cells of the human pituitary during the fetal period. Immunohistochemistry was used to show the expression of several regulatory peptides, namely Angiotensin-II, Neurotensin and Galanin, at successive gestational stages and their co-localization with hormones in the human fetal adenohypophysis. Somatotrophs, gonadotrophs and thyrotrophs were differentiated earliest. At gestational week 9, Angiotensin-II immunoreactivity was co-localized only with growth hormone immunoreactivity in somatotrophs, one of the first hormone-producing cells to differentiate. This co-localization remained until week 37. Neurotensin immunoreactivity was present in gonadotrophs and thyrotrophs in week 23, after FSH and TSH hormone differentiation. Galanin immunoreactivity was present in all hormone-producing cell types except corticotrophs. The different pro-opiomelanocortin-derived peptides were detected at different stages of gestation and adrenocorticotrophic hormone immunoreaction was the last to be detected. Our results show an interesting relationship between regulatory peptides and hormones during human fetal development, which could imply that these peptides play a regulatory role in the development of pituitary function. [source] Possible role of duration of PKC-induced ERK activation in the effects of agonists and phorbol esters on DNA synthesis in panc-1 cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006Gábor Z. Rácz Abstract Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) have been implicated in the effects of regulatory peptides on proliferation. We studied how ERK was activated by PKC following regulatory peptide or phorbol ester stimulation and we also investigated the effect of ERK activation on proliferation in Panc-1 cells. Panc-1 cells transfected with CCK1 receptors were treated with cholecystokinin (CCK), neurotensin (NT), or phorbol 12-myristate 13-acetate (PMA). DNA synthesis was studied by measuring tritiated thymidine incorporation. PKC isoforms were selectively inhibited with Gö6983 and 200 nM Ro-32-0432, their translocation was detected by confocal microscopy and by subcellular fractionation followed by immunoblotting. ERK cascade activation was detected with phosphoERK immunoblotting and inhibited with 20 µM PD98059. PMA and CCK inhibited, NT stimulated DNA synthesis. These effects were inhibited by Ro-32-0432 but not by Gö6983 suggesting the involvement of PKC, in proliferation control. Confocal microscopy and subcellular fractionation demonstrated that PMA, CCK, and NT caused cytosol to membrane translocation of PKC, and ERK activation that was inhibited by Ro-32-0432 but not by Gö6983. ERK activation was prolonged following PMA and CCK, but transient after NT treatment. PMA, CCK, and NT all activated cyclinD1, while p21CIP1 expression was increased by only PMA and CCK, but not by NT; each of these effects is inhibited by PD98059. In conclusion, our results provide evidence for PKC,-mediated differential ERK activation and growth regulation in Panc-1C cells. Identification of the mechanisms by which these key signaling pathways are modulated could provide a basis for the development of novel therapeutic interventions to treat pancreatic cancer. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] Purification and crystallization of the extracellular domain of human neutral endopeptidase (neprilysin) expressed in Pichia pastorisACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2000Glenn E. Dale Neutral endopeptidase (NEP) is a mammalian zinc metalloprotease involved in the inactivation of a wide variety of regulatory peptides such as enkephalins and atrial natiuretic factor. The soluble extracellular domain of NEP (sNEP) was expressed in the methylotrophic yeast Pichia pastoris. The protein was purified to homogeneity and single crystals have been obtained. Enzymatic deglycosylation of the enzyme was essential for the production of crystals suitable for X-ray analysis for both the NEP,phosphoramidon binary complex and the apo enzyme. [source] The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspectsBIOLOGICAL REVIEWS, Issue 4 2004Karen B. Helle ABSTRACT The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III,VII are collectively referred to as,granins'and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms. [source] |