Home About us Contact | |||
Regulatory Circuits (regulatory + circuit)
Selected AbstractsTemporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilisMOLECULAR MICROBIOLOGY, Issue 1 2007Wiep Klaas Smits Summary In bacterial differentiation, mechanisms have evolved to limit cells to a single developmental pathway. The establishment of genetic competence in Bacillus subtilis is controlled by a complex regulatory circuit that is highly interconnected with the developmental pathway for spore formation, and the two pathways appear to be mutually exclusive. Here we show by in vitro and in vivo analyses that a member of the Rap family of proteins, RapH, is activated directly by the late competence transcription factor ComK, and is capable of inhibiting both competence and sporulation. Importantly, RapH is the first member of the Rap family that demonstrates dual specificity, by dephosphorylating the Spo0F,P response regulator and inhibiting the DNA-binding activity of ComA. The protein thus acts at the stage where competence is well initiated, and prevents initiation of sporulation in competent cells as well as contributing to the escape from the competent state. A deletion of rapH induces both differentiation pathways and interferes with their temporal separation. Together, these results indicate that RapH is an integral part of a multifactorial regulatory circuit affecting the cell's decision between distinct developmental pathways. [source] Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coliMOLECULAR MICROBIOLOGY, Issue 4 2005Daniel Vinella Summary In Escherichia coli the ,-lactam mecillinam specifically inhibits penicillin-binding protein 2 (PBP2), a peptidoglycan transpeptidase essential for maintaining rod shape. We have previously shown that PBP2 inactivation, results, in, a, cell, division, block, and, that an increased concentration of the nucleotide ppGpp, effector of the RelA-dependent stringent response, confers mecillinam resistance and allows cells to divide as spheres in the absence of PBP2 activity. In this study we have characterized an insertion mutation which confers mecillinam resistance in wild-type and ,relA strains but not in ,relA,spoT strains, devoid of ppGpp. The mutant has an insertion in the fes gene, coding for enterochelin esterase. This cytoplasmic enzyme hydrolyses enterochelin,Fe3+ complexes, making the scavenged iron available to the cells. We show that inactivation of the fes gene causes iron limitation on rich medium plates and a parallel SpoT-dependent increase of the ppGpp pool, as judged by the induction of the iron-regulated fiu::lacZ fusion and the repression of the stringently controlled P1rrnB::lacZ fusion respectively. We further show, by direct ppGpp assays, that iron starvation in liquid medium produces a SpoT-dependent increase of the ppGpp pool, strongly suggesting a role for iron in the balance of the two activities of SpoT, synthesis and hydrolysis of (p)ppGpp. Finally, we present evidence that ppGpp exerts direct or indirect positive control on iron uptake, suggesting a simple homeostatic regulatory circuit: iron limitation leads to an increased ppGpp pool, which increases the expression of iron uptake genes, thereby alleviating the limitation. [source] A bacterial conjugation machinery recruited for pathogenesisMOLECULAR MICROBIOLOGY, Issue 5 2003Anja Seubert Summary Type IV secretion systems (T4SS) are multicomponent transporters of Gram-negative bacteria adapted to functions as diverse as DNA transfer in bacterial conjugation or the delivery of effector proteins into eukaryotic target cells in pathogenesis. The generally modest sequence conservation between T4SS may reflect their evolutionary distance and/or functional divergence. Here, we show that the establishment of intraerythrocytic parasitism by Bartonella tribocorum requires a putative T4SS, which shares an unprecedented level of sequence identity with the Trw conjugation machinery of the broad-host-range antibiotic resistance plasmid R388 (up to 80% amino acid identity for individual T4SS components). The highly conserved T4SS loci are collinear except for the presence of numerous tandem gene duplications in B. tribocorum, which mostly encode variant forms of presumed surface-exposed pilus subunits. Conservation is not only structural, but also functional: R388 mutated in either trwD or trwH encoding essential T4SS components could be trans -complemented for conjugation by the homologues of the B. tribocorum system. Conservation also includes the transcription regulatory circuit: both T4SS loci encode a highly homologous and interchangeable KorA/KorB repressor system that negatively regulates the expression of all T4SS components. This striking example of adaptive evolution reveals the capacity of T4SS to assume dedicated functions in either DNA transfer or pathogenesis over rather short evolutionary distance and implies a novel role for the conjugation systems of widespread broad-host-range plasmids in the evolution of bacterial pathogens. [source] Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plantsTHE PLANT JOURNAL, Issue 6 2004David Goslings Summary The regulation of tetrapyrrole biosynthesis in higher plants has been attributed to metabolic feedback inhibition of Glu tRNA reductase by heme. Recently, another negative regulator of tetrapyrrole biosynthesis has been discovered, the FLU protein. During an extensive second site screen of mutagenized flu seedlings a suppressor of flu, ulf3, was identified that is allelic to hy1 and encodes a heme oxygenase. Increased levels of heme in the hy1 mutant have been implicated with inhibiting Glu tRNA reductase and suppressing the synthesis of , -aminolevulinic acid (ALA) and Pchlide accumulation. When combined with hy1 or ulf3 upregulation of ALA synthesis and overaccumulation of protochlorophyllide in the flu mutants were severely suppressed supporting the notion that heme antagonizes the effect of the flu mutation by inhibiting Glu tRNA reductase independently of FLU. The coiled-coil domain at the C-terminal end of Glu tRNA reductase interacts with FLU, whereas the N-terminal site of Glu tRNA reductase that is necessary for the inhibition of the enzyme by heme is not required for this interaction. The interaction with FLU is specific for the Glu tRNA reductase encoded by HEMA1 that is expressed in photosynthetically active tissues. FLU seems to be part of a second regulatory circuit that controls chlorophyll biosynthesis by interacting directly with Glu tRNA reductase not only in etiolated seedlings but also in light-adapted green plants. [source] Lumped dynamic model for a bistable genetic regulatory circuit within a variable-volume whole-cell modelling frameworkASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009Gheorghe Maria Abstract Genetic regulatory circuits (GRCs) including switches, oscillators, signal amplifiers or filters, and signalling circuits are responsible for the control of cell metabolism. Modelling such complex GRCs is a difficult task due to high complexity of the the process (partly known) and the structural, functional and temporal hierarchical organisation of the cell system. Modular lumped representation, grouping some reactions/components and including different types of variables, is a promising alternative allowing individual module characterisation and elaboration of extended simulation platforms for representing the GRC dynamic properties and designing new cell functions. Such models allow to in-silico design modified micro-organisms with desirable properties for practical applications in bioprocess engineering and biotechnology. In the present work, the analysis of a designed bistable switch formed by two gene expression modules is performed in a variable-volume and whole-cell modelling framework, by mimicking the Escherichia coli cell growth. The advantages but also limitations of such a new approach are investigated, by using a Hill-type kinetics combined with few elementary steps, with the aim of better representing the adjustable levels of key intermediates tuning the GRC regulatory properties in terms of stability strength, species connectivity, responsiveness, and regulatory efficiency under stationary and dynamic perturbations. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activityENVIRONMENTAL MICROBIOLOGY, Issue 8 2006Florian Bredenbruch Summary Virulence factor production and the development of biofilms in Pseudomonas aeruginosa have been shown to be regulated by two hierarchically organized quorum-sensing systems activated by two types of small acyl-homoserine lactone signal molecules. Recently, a third type of bacterial signal molecule, the Pseudomonas quinolone signal (PQS), has been identified, which positively regulates a subset of genes dependent on the quorum-sensing systems. However, the molecular mechanism underlying PQS signalling has remained poorly understood. In this study the global transcriptional profile of P. aeruginosa in response to PQS revealed a marked upregulation of genes belonging to the tightly interdependent functional groups of the iron acquisition and the oxidative stress response. Remarkably, most of the differentially regulated genes, as well as the induction of rhlR, could be traced back to an iron-chelating effect of PQS. Our results amount to the elucidation of how PQS affects P. aeruginosa and have important implications for the understanding of the complex regulatory circuits involved in P. aeruginosa gene regulation. [source] Quorum sensing: the power of cooperation in the world of PseudomonasENVIRONMENTAL MICROBIOLOGY, Issue 4 2005Mario Juhas Summary Work over the past few years has provided evidence that quorum sensing is a generic regulatory mechanism that allows bacteria to launch a unified, coordinated response in a population density-dependent manner to accomplish tasks which would be difficult, if not impossible, to achieve for a single bacterial cell. Quorum sensing systems are widespread among pseudomonads and the one of the human opportunistic pathogen Pseudomonas aeruginosa belongs to the most extensively studied cell-to-cell communication systems. In this organism, quorum sensing is highly complex and is made up of two interlinked N- acyl homoserine lactone (AHL)-dependent regulatory circuits, which are further modulated by a non-AHL-related signal molecule and numerous regulators acting both at the transcriptional and post-transcriptional level. This genetic complexity may be one of the key elements responsible for the tremendous environmental versatility of P. aeruginosa. Work of the past few years showed that quorum sensing is essential for the expression of a battery of virulence factors as well as for biofilm formation in P. aeruginosa and thus represents an attractive target for the design of novel drugs for the treatment of P. aeruginosa infections. Furthermore, the cell-to-cell communication ability was also demonstrated in a number of additional pseudomonads. [source] Engineering input/output nodes in prokaryotic regulatory circuitsFEMS MICROBIOLOGY REVIEWS, Issue 5 2010Aitor De Las Heras Abstract A large number of prokaryotic regulatory elements have been interfaced artificially with biological circuits that execute specific expression programs. Engineering such circuits involves the association of input/output components that perform discrete signal-transfer steps in an autonomous fashion while connected to the rest of the network with a defined topology. Each of these nodes includes a signal-recognition component for the detection of the relevant physicochemical or biological stimulus, a molecular device able to translate the signal-sensing event into a defined output and a genetic module capable of understanding such an output as an input for the next component of the circuit. The final outcome of the process can be recorded by means of a reporter product. This review addresses three such aspects of forward engineering of signal-responding genetic parts. We first recap natural and non-natural regulatory assets for designing gene expression in response to predetermined signals , chemical or otherwise. These include transcriptional regulators developed by in vitro evolution (or designed from scratch), and synthetic riboswitches derived from in vitro selection of aptamers. Then we examine recent progress on reporter genes, whose expression allows the quantification and parametrization of signal-responding circuits in their entirety. Finally, we critically examine recent work on other reporters that confer bacteria with gross organoleptic properties (e.g. distinct odour) and the interfacing of signal-sensing devices with determinants of community behaviour. [source] HIF-1 and p53: communication of transcription factors under hypoxiaJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2004Tobias Schmid Abstract Oxygen sensing and reactivity to changes in the concentration of oxygen is a fundamental property of cell physiology. The lack of O2 (hypoxia) is transmitted into many adaptive responses, a process that is largely controlled by a transcription factor known as hypoxia inducible factor-1 (HIF-1). More recent reports suggest that besides its traditional regulation via proteasomal degradation other signaling pathways contribute to stability regulation of the HIF-1, subunit and/or HIF-1 transactivation. These regulatory circuits allow for the integration of HIF-1 into scenarios of cell-survival vs. cell-death with the rule of the thumb that short-term mild hypoxia maintains cell viability while prolonged and severe hypoxia provokes cell demise. Cell death pathways are associated with stabilization of the tumor suppressor p53, a response also seen under hypoxic conditions. Here we summarize recent information on accumulation of HIF-1, and p53 under hypoxia and provide a model to explain the communication between HIF-1 and p53 under (patho)physiological conditions. [source] Microarray expression profiling: capturing a genome-wide portrait of the transcriptomeMOLECULAR MICROBIOLOGY, Issue 4 2003Tyrrell Conway Summary The bacterial transcriptome is a dynamic entity that reflects the organism's immediate, ongoing and genome-wide response to its environment. Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a ,system' that is more than the sum of its parts. The vigilance of microorganisms to environmental change, the alacrity of the transcriptional response, the short half-life of bacterial mRNA and the genome-scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to chang-ing conditions of growth; the identification of co-ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of bacterial pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival in the host's microenvironment. Identifying these colonization strategies and their cognate expression patterns involves a ,deconstruction' process that combines bioinformatics analysis and in vitro DNA array experimentation. [source] Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathwaysMOLECULAR MICROBIOLOGY, Issue 2 2003Holly Slater Summary Serratia sp. ATCC 39006 produces two secondary metabolite antibiotics, 1-carbapen-2-em-3-carboxylic acid (Car) and the red pigment, prodigiosin (Pig). We have previously reported that production of Pig and Car is controlled by N -acyl homoserine lactone (N -AHL) quorum sensing, with synthesis of N -AHLs directed by the LuxI homologue SmaI, and is also regulated by Rap, a member of the SlyA family. We now describe further characterization of the SmaI quorum-sensing system and its connection with other regulatory mechanisms. We show that the genes responsible for biosynthesis of Pig, pigA,O, are transcribed as a single polycistronic message in an N -AHL-dependent manner. The smaR gene, transcribed convergently with smaI and predicted to encode the LuxR homologue partner of SmaI, was shown to possess a negative regulatory function, which is uncommon among the LuxR-type transcriptional regulators. SmaR represses transcription of both the pig and car gene clusters in the absence of N -AHLs. Specifically, we show that SmaIR exerts its effect on car gene expression via transcriptional control of carR, encoding a pheromone-independent LuxR homologue. Transcriptional activation of the pig and car gene clusters also requires a functional Rap protein, but Rap dependency can be bypassed by secondary mutations. Transduction of these suppressor mutations into wild-type backgrounds confers a hyper-Pig phenotype. Multiple mutations cluster in a region upstream of the pigA gene, suggesting this region may represent a repressor target site. Two mutations mapped to genes encoding pstS and pstA homologues, which are parts of a high-affinity phosphate transport system (Pst) in Escherichia coli. Disruption of pstS mimicked phosphate limitation and caused concomitant hyper-production of Pig and Car, which was mediated, in part, through increased transcription of the smaI gene. The Pst and SmaIR systems define distinct, yet overlapping, regulatory circuits which form part of a complex regulatory network controlling the production of secondary metabolites in Serratia ATCC 39006. [source] Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 23-24 2008Diego Omar Serra Abstract Proteome analysis was combined with whole-cell metabolic fingerprinting to gain insight into the physiology of mature biofilm in Bordetella pertussis, the agent responsible for whooping cough. Recent reports indicate that B. pertussis adopts a sessile biofilm as a strategy to persistently colonize the human host. However, since research in the past mainly focused on the planktonic lifestyle of B. pertussis, knowledge on biofilm formation of this important human pathogen is still limited. Comparative studies were carried out by combining 2-DE and Fourier transform infrared (FT-IR) spectroscopy with multivariate statistical methods. These complementary approaches demonstrated that biofilm development has a distinctive impact on B. pertussis physiology. Results from MALDI-TOF/MS identification of proteins together with results from FT-IR spectroscopy revealed the biosynthesis of a putative acidic-type polysaccharide polymer as the most distinctive trait of B. pertussis life in a biofilm. Additionally, expression of proteins known to be involved in cellular regulatory circuits, cell attachment and virulence was altered in sessile cells, which strongly suggests a significant impact of biofilm development on B. pertussis pathogenesis. In summary, our work showed that the combination of proteomics and FT-IR spectroscopy with multivariate statistical analysis provides a powerful tool to gain further insight into bacterial lifestyles. [source] Lumped dynamic model for a bistable genetic regulatory circuit within a variable-volume whole-cell modelling frameworkASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009Gheorghe Maria Abstract Genetic regulatory circuits (GRCs) including switches, oscillators, signal amplifiers or filters, and signalling circuits are responsible for the control of cell metabolism. Modelling such complex GRCs is a difficult task due to high complexity of the the process (partly known) and the structural, functional and temporal hierarchical organisation of the cell system. Modular lumped representation, grouping some reactions/components and including different types of variables, is a promising alternative allowing individual module characterisation and elaboration of extended simulation platforms for representing the GRC dynamic properties and designing new cell functions. Such models allow to in-silico design modified micro-organisms with desirable properties for practical applications in bioprocess engineering and biotechnology. In the present work, the analysis of a designed bistable switch formed by two gene expression modules is performed in a variable-volume and whole-cell modelling framework, by mimicking the Escherichia coli cell growth. The advantages but also limitations of such a new approach are investigated, by using a Hill-type kinetics combined with few elementary steps, with the aim of better representing the adjustable levels of key intermediates tuning the GRC regulatory properties in terms of stability strength, species connectivity, responsiveness, and regulatory efficiency under stationary and dynamic perturbations. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Microbial systems engineering: First successes and the way aheadBIOESSAYS, Issue 4 2010Sven Dietz Abstract The first promising results from "streamlined," minimal genomes tend to support the notion that these are a useful tool in biological systems engineering. However, compared with the speed with which genomic microbial sequencing has provided us with a wealth of data to study biological functions, it is a slow process. So far only a few projects have emerged whose synthetic ambition even remotely matches our analytic capabilities. Here, we survey current technologies converging into a future ability to engineer large-scale biological systems. We argue that the underlying synthetic technology, de novo DNA synthesis, is already rather mature , in particular relative to the scope of our current synthetic ambitions. Furthermore, technologies towards rationalizing the design of the newly synthesized DNA fragment are emerging. These include techniques to implement complex regulatory circuits, suites of parts on a DNA and RNA level to fine tune gene expression, and supporting computational tools. As such DNA fragments will, in most cases, be destined for operating in a cellular context, attention has to be paid to the potential interactions of the host with the functions encoded on the engineered DNA fragment. Here, the need of biological systems engineering to deal with a robust and predictable bacterial host coincides with current scientific efforts to theoretically and experimentally explore minimal bacterial genomes. [source] |