Regulator Proteins (regulator + protein)

Distribution by Scientific Domains

Kinds of Regulator Proteins

  • response regulator protein


  • Selected Abstracts


    The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR

    ENVIRONMENTAL MICROBIOLOGY, Issue 10 2007
    Tom Defoirdt
    Summary This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxRVh mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxRVh response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxRVh protein also showed less shifts with furanone-treated LuxRVh, whereas the LuxRVh concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxRVh unable to bind to the promoter sequences of quorum sensing-regulated genes. [source]


    Regulation of virulence determinants in Staphylococcus aureus: complexity and applications

    FEMS MICROBIOLOGY REVIEWS, Issue 2 2004
    Stéphane Bronner
    Abstract The virulence of Staphylococcus aureus is essentially determined by cell wall associated proteins and secreted toxins that are regulated and expressed according to growth phases and/or growth conditions. Gene expression is regulated by specific and sensitive mechanisms, most of which act at the transcriptional level. Regulatory factors constitute numerous complex networks, driving specific interactions with target gene promoters. These factors are largely regulated by two-component regulatory systems, such as the agr, saeRS, srrAB, arlSR and lytRS systems. These systems are sensitive to environmental signals and consist of a sensor histidine kinase and a response regulator protein. DNA-binding proteins, such as SarA and the recently identified SarA homologues (SarR, Rot, SarS, SarT, SarU), also regulate virulence factor expression. These homologues might be intermediates in the regulatory networks. The multiple pathways generated by these factors allow the bacterium to adapt to environmental conditions rapidly and specifically, and to develop infection. Precise knowledge of these regulatory mechanisms and how they control virulence factor expression would open up new perspectives for antimicrobial chemotherapy using key inhibitors of these systems. [source]


    Analysis of DEFB1 regulatory SNPs in cystic fibrosis patients from North-Eastern Italy

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 3 2010
    L. Segat
    Summary Cystic fibrosis (CF) transmembrane regulator protein (CFTR) gene is undoubtedly the main genetic factor involved in the modulation of CF phenotype. However, other factors such as human defensins and the genes encoding for these antimicrobial peptides have been hypothesized as possible modifiers influencing airways infection in CF patients, but their role in the pathogenesis of lung disease is still debated. Since DEFB1 gene encoding for human beta-defensin 1 displays features such as antimicrobial or chemotactic activity playing a role in inflammation, it has been considered as a possible candidate CF modifier gene. We analysed three single nucleotide polymorphisms (SNPs) in the 5,-untranslated region of the DEFB1 gene (namely g-52G>A, g-44C>G and g-20G>A) in a group of 62 CF patients from North Eastern Italy, and in 130 healthy controls, with the aim of verifying the possible association of these functional SNPs with the pulmonary phenotype of CF patients. DEFB1 SNPs have been genotyped by using Taqman allele-specific fluorescent probes and a real-time PCR platform. No significant differences were found for allele, genotype and haplotype frequencies of DEFB1 g-52G>A, g-44C>G and g-20G>A SNPs in CF patients stratified for Pseudomonas aeruginosa infection, as well as in patients with a severe and mild clinical phenotype or in patients stratified for CFTR genotypes. DEFB1 allele, genotype and haplotype frequencies of CF patients globally considered were similar to those of healthy controls. Our findings are discordant with respect to another recent study performed on CF patients coming from Southern Italy, probably due to different ethnicity of the patients. [source]


    Dimer-induced signal propagation in Spo0A

    MOLECULAR MICROBIOLOGY, Issue 3 2004
    K. Muchová
    Summary Spo0A, the response regulator protein controlling the initiation of sporulation in Bacillus, has two distinct domains, an N-terminal phosphoacceptor (or receiver) domain and a C-terminal DNA-binding (or effector) domain. The phosphoacceptor domain mediates dimerization of Spo0A on phosphorylation. A comparison of the crystal structures of phosphorylated and unphosphorylated response regulators suggests a mechanism of activation in which structural changes originating at the phosphorylatable aspartate extend to the ,4,5,5 surface of the protein. In particular, the data show an important role in downstream signalling for a conserved aromatic residue (Phe-105 in Spo0A), the conformation of which alters upon phosphorylation. In this study, we have prepared a Phe-105 to Ala mutant to probe the contribution of this residue to Spo0A function. We have also made an alanine substitution of the neighbouring residue Tyr-104 that is absolutely conserved in the Spo0As of spore-forming Bacilli. The spo0A(Y104A) and spo0A(F105A) alleles severely impair sporulation in vivo. In vitro phosphorylation of the purified proteins by phosphoramidate is unaffected, but dimerization and DNA binding are abolished by the mutations. We have identified intragenic suppressor mutations of spo0A(F105A) and shown that these second-site mutations in the purified proteins restore phosphorylation-dependent dimer formation. Our data support a model in which dimerization and signal transduction between the two domains of Spo0A are mediated principally by the ,4,5,5 signalling surface in the receiver domain. [source]


    Biological activity, membrane-targeting modification, and crystallization of soluble human decay accelerating factor expressed in E. coli

    PROTEIN SCIENCE, Issue 9 2004
    Jennifer White
    CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; GPI, glycophosphatidyl inositol; PpDAF, human DAF1,4 expressed in Pichia pastoris, N glycosylated and with an oligohistidine tag; EcDAF, nonglycosylated human DAF 1,4 expressed in Escherichia coli; nDAF, human native glycosylated (GPI-anchored) DAF from erythrocytes; EcDAF-MP, soluble E. coli human DAF linked through a C-terminal cysteine to the myristoylated peptide APT542; PCR, polymerase chain reaction; SCR, short consensus repeat; TCEP, Tris- (2-carboxyethyl) phosphine Abstract Decay-accelerating factor (DAF, CD55) is a glycophosphatidyl inositol-anchored glycoprotein that regulates the activity of C3 and C5 convertases. In addition to understanding the mechanism of complement inhibition by DAF through structural studies, there is also an interest in the possible therapeutic potential of the molecule. In this report we describe the cloning, expression in Escherichia coli, isolation and membrane-targeting modification of the four short consensus repeat domains of soluble human DAF with an additional C-terminal cysteine residue to permit site-specific modification. The purified refolded recombinant protein was active against both classical and alternative pathway assays of complement activation and had similar biological activity to soluble human DAF expressed in Pichia pastoris. Modification with a membrane-localizing peptide restored cell binding and gave a large increase in antihemolytic potency. These data suggested that the recombinant DAF was correctly folded and suitable for structural studies as well as being the basis for a DAF-derived therapeutic. Crystals of the E. coli -derived protein were obtained and diffracted to 2.2 Å, thus permitting the first detailed X-ray crystallography studies on a functionally active human complement regulator protein with direct therapeutic potential. [source]


    Purification, crystallization and initial X-ray diffraction study of the zinc-finger domain of zebrafish Nanos

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2009
    Hiroshi Hashimoto
    Nanos is a highly conserved RNA-binding protein in higher eukaryotes and acts as a key regulator protein involved in translational control utilizing the 3, untranslated region of mRNA. The C-terminal domain of Nanos has two conserved and novel CCHC-type zinc-finger motifs that are responsible for the function of Nanos. To clarify the structural basis of the function of Nanos, the C-terminal domain (residues 59,159) of zebrafish Nanos was overexpressed, purified and crystallized. The crystal belonged to space group P63, with unit-cell parameters a = b = 100.9, c = 71.5,Å, , = 120°. Structure determination by the MAD/SAD method is now in progress. [source]


    A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode

    FEMS MICROBIOLOGY LETTERS, Issue 1 2002
    Frédéric Trémoulet
    Abstract Escherichia coli 0157:H7 biofilms were studied by a new method of cultivation in order to identify some of the proteins involved in the biofilm phenotype. A proteomic analysis of sessile or planktonic bacteria of the same age was carried out by two-dimensional electrophoresis, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and database searching. Comparison of two-dimensional gels showed clear differences between protein patterns of sessile and planktonic cells. Fourteen proteins increased in biofilms, whereas three decreased. From these 17 proteins, 10 were identified by MALDI-TOF-MS and could be classified into four categories according to their function: (1) general metabolism proteins (malate dehydrogenase, thiamine-phosphate pyrophosphorylase), (2) sugar and amino acid transporters (d -ribose-binding periplasmic protein, d -galactose-binding protein, YBEJ), (3) regulator proteins (DNA starvation protein and H-NS) and (4) three proteins with unknown function. The results of this study showed that E. coli O157:H7 modified the expression of several proteins involved in biofilm growth mode. [source]


    Riding the sulfur cycle , metabolism of sulfonates and sulfate esters in Gram-negative bacteria

    FEMS MICROBIOLOGY REVIEWS, Issue 2 2000
    Michael A. Kertesz
    Abstract Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the ,-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH2 -dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH2 -dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition. [source]


    Molecular mechanisms of heavy metal tolerance and evolution in invertebrates

    INSECT SCIENCE, Issue 1 2009
    Thierry K. S. Janssens
    Abstract Following the genomics revolution, our knowledge of the molecular mechanisms underlying defenses against stress has been greatly expanded. Under strong selective pressure many animals may evolve an enhanced stress tolerance. This can be achieved by altering the structure of proteins (through mutations in the coding regions of genes) or by altering the amount of protein (through changes in transcriptional regulation). The latter type of evolution can be achieved by substitutions in the promoter of the gene of interest (cis -regulatory change) or by altering the structure or amount of transcriptional regulator proteins (trans -regulatory change). The metallothionein system is one of the best studied stress response systems in the context of heavy metals. Metallothionein expression is assumed to be regulated by metal transcription factor 1 (MTF-1); however, up to now the involvement of MTF-1 has only been proven for some vertebrates and Drosophila. Data on invertebrates such as nematodes and earthworms suggest that other mechanisms of metallothionein induction may be present. A detailed study of Cd tolerance was done for a species of soil-living springtail, Orchesella cincta. The metallothionein gene of this species is overexpressed in metal-exposed field populations. Analysis of the metallothionein promoter has demonstrated extensive polymorphisms that have a functional significance, as shown in bioreporter assays. In a study comparing 20 different populations, the frequency of a high-expresser promoter allele was positively correlated with the concentration of metals in soil, especially Cd. The springtail study shows that cis -regulatory change of genes involved in the cellular stress response may contribute to evolution of metal tolerance. [source]


    Malignant transformation of mature cystic teratoma to squamous cell carcinoma involves altered expression of p53- and p16/Rb-dependent cell cycle regulator proteins

    PATHOLOGY INTERNATIONAL, Issue 12 2008
    Atsuko Iwasa
    Ovarian mature cystic teratomas (MCT) uncommonly undergo malignant transformation to squamous cell carcinoma (SCC). While alterations in the p53 tumor suppressor gene and protein have been shown, few studies have analyzed other molecular changes leading to this malignant conversion. The purpose of the present study was to investigate 21 samples of SCC arising in MCT for altered expression in known p53- and p16/Rb-dependent cell cycle regulatory proteins, and the association between their expression and cellular proliferation and histological features. Overexpression of the p53 protein was observed in 14 SCC (67%), while four (19%) had point mutations in the p53 gene. Reduced expression of the p16 protein was observed in 18 SCC (86%), while p16 gene alterations (hypermethylation (29%) and point mutation (33%)) were found in 11 (52%). Furthermore, a statistically significant correlation was observed between p53 and Rb overexpression (P = 0.0010), and the overexpression of both p53 and Rb was respectively significantly correlated with increased cellular proliferation. The results indicate that alterations in both the p53 and p16-Rb pathways are associated with SCC arising in MCT. [source]


    Genetic analysis of response regulator activation in bacterial chemotaxis suggests an intermolecular mechanism

    PROTEIN SCIENCE, Issue 11 2002
    Sandra Da Re
    Abstract Response regulator proteins of two-component systems are usually activated by phosphorylation. The phosphorylated response regulator protein CheY,P mediates the chemotaxis response in Escherichia coli. We performed random mutagenesis and selected CheY mutants that are constitutively active in the absence of phosphorylation. Although a single amino acid substitution can lead to constitutive activation, no single DNA base change can effect such a transition. Numerous different sets of mutations that activate in synergy were selected in several different combinations. These mutations were all located on the side of CheY defined by ,4, ,5, ,5, and ,1. Our findings argue against the two-state hypothesis for response regulator activation. We propose an alternative intermolecular mechanism that involves a dynamic interplay between response regulators and their effector targets. [source]


    Molecular determinants of inactivation in voltage-gated Ca2+ channels

    THE JOURNAL OF PHYSIOLOGY, Issue 2 2000
    Steffen Hering
    Evolution has created a large family of different classes of voltage-gated Ca2+ channels and a variety of additional splice variants with different inactivation properties. Inactivation controls the amount of Ca2+ entry during an action potential and is, therefore, believed to play an important role in tissue-specific Ca2+ signalling. Furthermore, mutations in a neuronal Ca2+ channel (Cav2.1) that are associated with the aetiology of neurological disorders such as familial hemiplegic migraine and ataxia cause significant changes in the process of channel inactivation. Ca2+ channels of a given subtype may inactivate by three different conformational changes: a fast and a slow voltage-dependent inactivation process and in some channel types by an additional Ca2+ -dependent inactivation mechanism. Inactivation kinetics of Ca2+ channels are determined by the intrinsic properties of their pore-forming ,1 -subunits and by interactions with other channel subunits. This review focuses on structural determinants of Ca2+ channel inactivation in different parts of Ca2+ channel ,1 -subunits, including pore-forming transmembrane segments and loops, intracellular domain linkers and the carboxyl terminus. Inactivation is also affected by the interaction of the ,1 -subunits with auxiliary ,-subunits and intracellular regulator proteins. The evidence shows that pore-forming S6 segments and conformational changes in extra- (pore loop) and intracellular linkers connected to pore-forming segments may play a principal role in the modulation of Ca2+ channel inactivation. Structural concepts of Ca2+ channel inactivation are discussed. [source]


    Stress Response of Escherichia coli

    COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, Issue 3 2006
    H.J. Chung
    ABSTRACT:,Escherichia coli encounter numerous different stresses during their growth, survival, and infection. These stresses are relevant to survival in foods and food processing environments. E. coli and other bacteria respond to stress conditions by activating small or large groups of genes under the control of common regulator proteins. Stress conditions result in the accumulation of these regulator proteins and subsequent transcription of many genes allows cells to cope with specific stress situations, conferring stress tolerance and survival. In addition, induced stress tolerance of cells is attributed to enhanced virulence and enhanced tolerance to other stresses (cross-protection). In this review, regulation of stress and the stress tolerance response of E. coli to heat, acid, starvation, and cold stresses that are commonly used in food preservation and food production will be addressed. The effect of different stress on survival, adaptation, and cross-protection of E. coli studied using laboratory media, and real foods will be briefly summarized. Finally, the relationship of stress response and subsequent virulence and cross-protection will also be discussed. [source]


    Structure of the transcription regulator CcpA from Lactococcus lactis

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2007
    Bernhard Loll
    Catabolite control protein A (CcpA) functions as master transcriptional regulator of carbon catabolism in Firmicutes. It belongs to the family of bacterial repressor/regulator proteins. Here, the crystal structure of the 76,kDa homodimeric CcpA protein from Lactococcus lactis subsp. lactis IL1403 is presented at 1.9,Å resolution in the absence of cognate DNA. The phases were derived by molecular replacement and the structure was refined to crystallographic R and Rfree factors of 0.177 and 0.211, respectively. The presence of a sulfate molecule in the direct vicinity of a putative effector-binding site in the monomer allowed the derivation of a model for the possible binding of small organic effector molecules. [source]