Home About us Contact | |||
Regulation Pathways (regulation + pathway)
Selected AbstractsProgestin upregulates G-protein-coupled receptor 30 in breast cancer cellsFEBS JOURNAL, Issue 10 2002Tytti M. Ahola A differential display method was used to study genes the expression of which is altered during growth inhibition induced by medroxyprogesterone acetate (MPA). A transcript of G-protein-coupled receptor 30 (GPR30) was upregulated by MPA in estrogen-treated MCF-7 breast cancer cells. Northern-blot analysis showed a progestin-specific primary target gene, which was enhanced by progesterone and different progestins, but not by dihydrotestosterone or dexamethasone, and which was abrogated by antiprogestin RU486. The dose-dependent and time-dependent increase in GPR30 mRNA expression correlated with MPA-induced growth inhibition in MCF-7 cells. Additionally, GPR30 upregulation by progestin correlated with growth inhibition when a comparison was made between different breast cancer cell lines. The ERK1/ERK2 pathway is capable of inducing progesterone receptor-dependent and ligand-dependent transcription. Thus we sought to establish whether different MAPK pathway inhibitors affect progestin-induced GPR30 mRNA regulation. The regulation of GPR30 was independent of ERK pathway activation, but the p38 pathway inhibitor induced GPR30 expression, which suggested a potential gene regulation pathway. These data demonstrate a new progestin target gene, the expression of which correlates with growth inhibition. [source] Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae)INSECT MOLECULAR BIOLOGY, Issue 3 2007A. Rafaeli Abstract Pheromone-biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone production in many female moths. PBAN-like peptides, with common FXPRLamide C-terminals are found in other insect groups where they have other functions. The ubiquity and multifunctional nature of the pyrokinin/PBAN family of peptides suggests that the PBAN receptor proteins could also be present in a variety of insect tissues with alternative functions from that of sex pheromone biosynthesis. Previously we showed the presence of the PBAN-R in Helicoverpa armigera at the protein level. In the present study we confirm the similarities between the two Helicoverpa species: armigera and zea by (1) demonstrating the presence of the receptor protein in Sf9 cells, cloned to express the HezPBAN receptor, as compared with the endogenous receptor protein, previously shown in H. armigera pheromone glands, and (2) by identifying the nucleotide sequence of the PBAN-R from mRNA of H. armigera pheromone glands. Sequences of the two Helicoverpa spp. are 98% identical with most changes taking place in the 3,-end. We demonstrate the spatial distribution of the PBAN receptor protein in membranes of H. armigera brain (Br), thoracic ganglion (TG) and ventral nerve cord (VNC). We also demonstrate the presence and differential expression of the PBAN receptor gene (using reverse transcription,polymerase chain reaction and reverse transcription,quantitative real-time polymerase chain reaction, respectively) in the neural tissues (Br, TG and VNC) of adult H. armigera female moths as compared with its presence in pheromone glands. Surprisingly, the gene for the PBAN receptor is also detected in the male tissue homologous to the female pheromone gland, the aedeagus, although the protein is undetectable and PBAN does not induce physiological (pheromone production) or cellular (cyclic-adenosine monophosphate production) responses in this tissue. Our findings indicate that PBAN or PBAN-like receptors are present in the neural tissues and may represent a neurotransmitter-like function for PBAN-like peptides. In addition, the surprising discovery of the presence of the gene encoding the PBAN receptor in the male homologous tissue, but its absence at the protein level, launches opportunities for studying molecular regulation pathways and the evolution of these G protein coupled receptors (GPCRs). [source] CARS microscopy of lipid stores in yeast: the impact of nutritional state and genetic backgroundJOURNAL OF RAMAN SPECTROSCOPY, Issue 7 2009Christian Brackmann Abstract We have developed a protocol for sub-micrometer resolved and chemically specific imaging of lipid storage in vivo employing coherent anti-Stokes Raman scattering (CARS) microscopy of one of the most important model organisms Saccharomyces cerevisiae,the yeast cell. By probing the carbon,hydrogen vibration using the nonlinear process of CARS, lipid droplets in the yeast cells clearly appear, as confirmed by comparative studies on relevant labeled organelles using two-photon fluorescence microscopy. From the images, unique quantitative data can be deduced with high three-dimensional resolution, such as the volume, shape, number, and intracellular location of the neutral lipid stores. We exemplify the strength and usability of the method for two cases: the impact on lipid storage of the nutritional condition (starvation and type of carbon source available) as well as of genetic modification of two fundamental metabolic regulation pathways involving carbohydrate and lipid storage (BCY1 and DGA1, LRO1, ARE1/2 deletions), respectively. While the impact of carbon source on the total cellular lipid volume was minimal, long-term starvation induces a significant accumulation of lipid droplets. We also confirm that the lipid-storage-deficient mutant is indeed unable to synthesize lipid droplets, and that the inability of the bcy1 -mutant to store carbohydrates is compensated by a two-fold increase in stored neutral lipids. We note that there is a significant cell-to-cell variability in neutral lipid storage in general, i.e. that there is a correspondence to the noise found for gene expression also in lipidomics. Copyright © 2009 John Wiley & Sons, Ltd. [source] Bacillus subtilis antibiotics: structures, syntheses and specific functionsMOLECULAR MICROBIOLOGY, Issue 4 2005Torsten Stein Summary The endospore-forming rhizobacterium Bacillus subtilis, the model system for Gram-positive organisms, is able to produce more than two dozen antibiotics with an amazing variety of structures. The produced anti-microbial active compounds include predominantly peptides that are either ribosomally synthesized and post-translationally modified (lantibiotics and lantibiotic-like peptides) or non-ribosomally generated, as well as a couple of non-peptidic compounds such as polyketides, an aminosugar, and a phospholipid. Here I summarize the structures of all known B. subtilis antibiotics, their biochemistry and genetic analysis of their biosyntheses. An updated summary of well-studied antibiotic regulation pathways is given. Furthermore, current findings are resumed that show roles for distinct B. subtilis antibiotics beyond the ,pure' anti-microbial action: Non-ribosomally produced lipopeptides are involved in biofilm and swarming development, lantibiotics function as pheromones in quorum-sensing, and a ,killing factor' effectuates programmed cell death in sister cells. A discussion of how these antibiotics may contribute to the survival of B. subtilis in its natural environment is given. [source] Signal pathway profiling of prostate cancer using reverse phase protein arraysPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2003Robert L. Grubb Abstract Reverse phase protein arrays represent a new proteomics microarray technology with which to study the fluctuating state of the proteome in minute quantities of cells. The activation status of cell signaling pathways controls cellular fate and deregulation of these pathways underpins carcinogenesis. Changes in pathway activation that occur between early stage prostatic epithelial lesions, prostatic stroma and the extracellular matrix can be analyzed by obtaining pure populations of cell types by laser capture microdissection (LCM) and analyzing the relative states of several key phosphorylation points within the cellular circuitry. We have applied reverse phase protein array technology to analyze the status of key points in cell signaling involved in pro-survival, mitogenic, apoptotic and growth regulation pathways in the progression from normal prostate epithelium to invasive prostate cancer. Using multiplexed reverse phase protein arrays coupled with LCM, the states of signaling changes during disease progression from prostate cancer study sets were analyzed. Focused analysis of phospho-specific endpoints revealed changes in cellular signaling events through disease progression and between patients. We have used a new protein array technology to study specific molecular pathways believed to be important in cell survival and progression from normal epithelium to invasive carcinoma directly from human tissue specimens. With the advent of molecular targeted therapeutics, the identification, characterization and monitoring of the signaling events within actual human biopsies will be critical for patient-tailored therapy. [source] RNA as a Drug Target: The Case of AminoglycosidesCHEMBIOCHEM, Issue 10 2003Quentin Vicens Dr. How to prevent antibiotic therapies from hitting a snag: Most antibiotics target molecular switches on the ribosome. The binding sites are discrete and made of conserved RNA residues rather than ribosomal proteins (see representation of paromycin binding to the ribosome). However, bacteria have evolved and mutated so that the antibiotics cannot bind. At least two types of new molecules could be designed to keep up in this race against evolution: 1) drugs that would bind to the mutated bacterial sites but not (to avoid toxicity) with human cytoplasmic and mitochondrial ribosomes, and 2) drugs that would interfere with other molecular switches involved in translation or regulation pathways. [source] |