Home About us Contact | |||
Regulated Secretory Pathway (regulated + secretory_pathway)
Selected AbstractsEfficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticityDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2008J.E. Lochner Abstract Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechanismFEBS JOURNAL, Issue 16 2007Jimmy D. Dikeakos There are seven members of the proprotein convertase (PC) family of secreted serine proteases that cleave their substrates at basic amino acids, thereby activating a variety of hormones, growth factors, and viruses. PC1/3, PC2 and PC5/6A are the only members of the PC family that are targeted to dense core secretory granules, where they carry out the processing of proteins that are secreted from the cell in a regulated manner. Previous studies have identified ,-helices in the C-termini of the PC1/3 and PC2 proteases that are required for this subcellular targeting. In the current study, we demonstrate that a predicted ,-helix in the C-terminus of PC5/6A is also critical for the ability of this domain to target a heterologous protein to the regulated secretory pathway of mouse endocrine AtT-20 cells. Analysis of the subcellular distribution of fusion proteins containing the C-terminal domains of PC1/3, PC2 and PC5/6A confirmed that all three domains have the capacity to redirect a constitutively secreted protein to the granule-containing cytoplasmic extensions. Analysis of the predicted structures formed by these three granule-sorting helices shows a correlation between their granule-sorting efficiency and the clustering of hydrophobic amino acids in their granule-targeting helices. [source] Confocal imaging and tracking of the exocytotic routes for D -serine-mediated gliotransmissionGLIA, Issue 12 2008Magalie Martineau Abstract D -Serine is an astrocyte-derived regulator for N -methyl- D -aspartate receptors, but the intracellular routes of its trafficking are still largely unknown. Here, we combined confocal microscopy with colocalization quantification to track the astrocytic organelles that store D -serine. We report that D -serine colocalizes with the transfected eGFP-synaptobrevin/VAMP2 and eGFP-cellubrevin/VAMP3, two v-SNAREs of the regulated secretory pathway. No significant colocalization was found with markers of the endosomal sorting and recycling system: EEA1, eGFP-endobrevin/VAMP8, eGFP-TI-VAMP/VAMP7, LAMP1, and CD63. Blockade of vesicular budding with colchicine shows that secretory vesicles import D -serine downstream to the Golgi apparatus. Finally, treatment of astrocytes with the Ca2+ -ionophore A23187, glutamate agonists, or bradykinin trigger translocation of synaptobrevin/VAMP2 to the plasma membrane with a concomitant disappearance of D -serine from the regulated secretory pathway. Our results provide morphological evidence for a vesicular storage of D -serine in the regulated secretory pathway and the possible recruitment of these stores by Ca2+ mobilization to release D -serine. © 2008 Wiley-Liss, Inc. [source] In Vivo Gene Transfer Studies on the Regulation and Function of the Vasopressin and Oxytocin GenesJOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2003D. Murphy Abstract Novel genes can be introduced into the germline of rats and mice by microinjecting fertilized one-cell eggs with fragments of cloned DNA. A gene sequence can thus be studied within the physiological integrity of the resulting transgenic animals, without any prior knowledge of its regulation and function. These technologies have been used to elucidate the mechanisms by which the expression of the two genes in the locus that codes for the neuropeptides vasopressin and oxytocin is confined to, and regulated physiologically within, specific groups of neurones in the hypothalamus. A number of groups have described transgenes, derived from racine, murine and bovine sources, in both rat and mouse hosts, that mimic the appropriate expression of the endogenous vasopressin and genes in magnocellular neurones (MCNs) of the supraoptic and paraventricular nuclei. However, despite considerable effort, a full description of the cis -acting sequences mediating the regulation of the vasopressin-oxytocin locus remains elusive. Two general conclusions have nonetheless been reached. First, that the proximal promoters of both genes are unable to confer any cell-specific regulatory controls. Second, that sequences downstream of the promoter, within the structural gene and/or the intergenic region that separates the two genes, are crucial for appropriate expression. Despite these limitations, sufficient knowledge has been garnered to specifically direct the expression of reporter genes to vasopressin and oxytocin MCNs. Further, it has been shown that reporter proteins can be directed to the regulated secretory pathway, from where they are subject to appropriate physiological release. The use of MCN expression vectors will thus enable the study of the physiology of these neurones through the targeted expression of biologically active molecules. However, the germline transgenic approach has a number of limitations involving the interpretation of phenotypes, as well as the large cost, labour and time demands. High-throughput somatic gene transfer techniques, principally involving the stereotaxic injection of hypothalamic neuronal groups with replication-deficient adenoviral vectors, are now being developed that obviate these difficulties, and which enable the robust, long-lasting expression of biologically active proteins in vasopressin and oxytocin MCNs. [source] Processing of Frameshifted Vasopressin PrecursorsJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2000Evans Biosynthesis of the vasopressin (VP) prohormone in magnocellular neurones of the hypothalamo-neurohypophysial system comprises endoplasmic reticulum (ER) transit, sorting into the regulated secretory pathway and subsequent processing in the individual proteins VP, neurophysin and a glycoprotein. These processes are severely disrupted in the homozygous diabetes insipidus (di/di) Brattleboro rat, which expresses a mutant VP precursor due to a single nucleotide deletion in the neurophysin region of the VP gene resulting in VP deficiency. Previous studies have shown the presence of additional frameshift mutations in VP transcripts, in solitary magnocellular neurones of the di/di rat due to a GA dinucleotide deletion resulting in two different mutant VP precursors with partly restored reading frame. Frameshifted VP precursors are also expressed in several magnocellular neurones in wild-type rats. In this study, we determined if the +1 frameshifted precursors from di/di and wild-type rats can lead to biosynthesis of the hormone VP. Therefore, eukaryotic expression plasmids containing the frameshifted VP cDNAs were transiently expressed in peptidergic tumour cell lines, and cells were analysed by reversed phase high-performance liquid chromatography and specific radioimmunoassays, and by immunofluoresence. Neuro2A neuroblastoma cells expressing the +1 frameshifted precursors of di/di rats retained products in the cell body. Only precursor or insignificant quantities of neurophysin-immunoreactive products were detected. In contrast, in AtT20 cells, frameshifted VP precursors were at least partly processed to yield the VP peptide, indicating that they have access to the regulated secretory pathway. Comparison between the two cell lines showed a very slow ER transit of the wild-type prohormone combined with inefficient processing in Neuro2A cells. The results show that mutant precursors can reach the regulated secretory pathway if ER transport is sufficiently rapid as in the case of AtT20 cells. This suggests that the di/di rat may regain the capacity to biosynthesize authentic VP through these +1 frameshifted precursors in magnocellular neurones. [source] Dietary lithium induces regional increases of mRNA encoding cysteine string protein in rat brainJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2003Mara L. Cordeiro Abstract Lithium salts are used to treat manic-depressive disorders; however, the mechanism by which lithium produces its therapeutic benefit remains obscure. The action of lithium may involve alterations of proteins important for regulating synaptic function. In this context, we observed recently that lithium at therapeutically relevant concentrations enhanced expression of cysteine string protein (csp) at the level of both mRNA and protein, in cell culture and in rat brain. Several lines of evidence have shown that csps are vital components of the regulated secretory pathway. We were interested whether lithium modulates expression of csp in specific brain regions. To study this issue, we analyzed the effects of chronic lithium administration (21 days) on csp mRNA levels in rat brain using in situ hybridization. Densitometric analysis revealed that lithium upregulated csp mRNA in several brain areas that are important for mood and behavior. This effect may be germane to understanding the beneficial action of lithium in mood disorders. © 2003 Wiley-Liss, Inc. [source] Characterisation of Plasmodium invasive organelles; an ookinete microneme proteomePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2009Kalpana Lal Dr. Abstract Secretion of microneme proteins is essential to Plasmodium invasion but the molecular composition of these secretory organelles remains poorly defined. Here, we describe the first Plasmodium microneme proteome. Purification of micronemes by subcellular fractionation from cultured ookinetes was confirmed by enrichment of known micronemal proteins and electron microscopy. Quantitation of electron micrographs showed >14-fold microneme enrichment compared to the intact ookinete, such that micronemes comprised 85% of the identifiable organelles in the fraction. Gel LC-MS/MS of the most abundant protein constituents of the fraction identified three known micronemal proteins chitinase, CTRP, SOAP, together with protein disulphide isomerase (PDI) and HSP70. Highly sensitive MudPIT shotgun proteomics described a total of 345 proteins in the fraction. M1 aminopeptidase and PDI, the former a recognised target of drug development, were both shown to have a micronemal location by IFA. We further identified numerous proteins with established vesicle trafficking and signaling functions consistent with micronemes being part of a regulated secretory pathway. Previously uncharacterised proteins comprise the largest functional group of the microneme proteome and will include secreted proteins important to invasion. [source] |