Home About us Contact | |||
Refractory Period (refractory + period)
Kinds of Refractory Period Selected AbstractsAlcohol Intake is Significantly Associated with Atrial Flutter in Patients under 60 Years of Age and a Shorter Right Atrial Effective Refractory PeriodPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2008GREGORY M. MARCUS M.D. Background: Although evidence suggests that alcohol is associated with atrial fibrillation (AF), the association between alcohol and atrial flutter (AFL) has not been examined. The mechanism connecting alcohol and atrial arrhythmias is unknown. Methods: Alcohol intake was determined in 195 consecutive patients with AF and AFL. Control subjects included patients with other supraventricular arrhythmias (n = 132) and healthy subjects (n = 54). Because of important competing risk factors for atrial arrhythmias in the elderly, stratification by age was performed. In a subset, atrial effective refractory periods (AERPs) were obtained from the high right atrium and proximal and distal coronary sinus. Results: AF and AFL patients were significantly more likely to be daily alcohol drinkers (27% vs 14% of controls, P = 0.001). In multivariable analysis, AFL patients , 60 years of age were significantly more likely to be daily drinkers than to drink no alcohol compared to controls (odds ratio 17, 95% confidence interval 1.6,192.0, P = 0.019). Progressively more frequent alcohol intake was significantly associated with a progressively greater odds of AFL in patients , 60 years of age (P = 0.045). Neither AF subjects of any age nor AFL subjects > 60 years of age exhibited significant associations with alcohol after multivariable adjustment. Right AERPs shortened significantly with increasing amounts of alcohol intake (P = 0.025), whereas left AERPs were not associated with alcohol intake. Conclusions: Alcohol intake is positively associated with AFL in younger patients. The mechanism may be related to a shortening of the right AERP. [source] Automatic Mode Switching Variants: Dual Demand Pacing, Retriggerable Atrial Refractory Periods, Automatic Mode Adaptation, and Pseudomode Switching.PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 7 2000Enlightenment or Obfuscation? No abstract is available for this article. [source] Chamber-specific effects of hypokalaemia on ventricular arrhythmogenicity in isolated, perfused guinea-pig heartEXPERIMENTAL PHYSIOLOGY, Issue 4 2009Oleg E. Osadchii Diuretic-induced hypokalaemia has been shown to promote cardiac arrhythmias in hypertensive patients. The present study was designed to determine whether hypokalaemia increases arrhythmic susceptibility of the left ventricle (LV) or the right ventricle (RV), or both. Proarrhythmic effects of hypokalaemic perfusion (2.5 mm K+ for 30 min) were assessed in isolated guinea-pig heart preparations using simultaneous recordings of volume-conducted electrocardiogram and monophasic action potentials from six ventricular epicardial sites. Effective refractory periods, ventricular fibrillation thresholds and inducibility of tachyarrhythmias by programmed electrical stimulation and tachypacing were determined at the LV and the RV epicardial stimulation sites. Hypokalaemia promoted spontaneous ventricular ectopic activity, an effect attributed to non-uniform prolongation of ventricular repolarization resulting in increased RV-to-LV transepicardial dispersion of refractoriness and action potential duration. Furthermore, hypokalaemic perfusion was associated with reduced ventricular fibrillation threshold and increased inducibility of tachyarrhythmias by programmed electrical stimulation and tachypacing as determined at the LV stimulation site. In contrast, the RV stimulation revealed no change in arrhythmic susceptibility of the RV chamber. Consistently, hypokalaemia reduced the LV effective refractory period but had no effect on the RV refractoriness. This change enabled generation of premature propagating responses by extrastimulus application at earlier time points during LV repolarization. Increased prematurity of extrastimulus-evoked propagating responses was associated with exaggerated local inhomogeneities in intraventricular conduction and action potential duration in hypokalaemic LV, thus creating a favourable stage for re-entrant tachyarrhythmias. Taken together, these findings suggest that proarrhythmic effects of hypokalaemia are mostly attributed to increased LV arrhythmogenicity in the guinea-pig heart. [source] Age-Related Increase in Atrial Fibrillation Induced by Transvenous Catheter-Based Atrial Burst Pacing: An In Vivo Rat Model of Inducible Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2010DONGZHU XU M.D. AF Rat Model Induced by Transvenous Catheter Pacing.,Introduction: Large animal models of atrial fibrillation (AF) are well established, but limited experimental reports exist on small animal models. We sought to develop an in vivo rat model of AF using a transvenous catheter and to evaluate the model's underlying characteristics. Methods and Results: Echocardiogram, surface electrocardiogram (ECG), and atrial effective refractory period (AERP) were recorded at baseline in young (3 months) and middle-aged (9 months) Wistar rats. AF inducibility and duration were measured through transvenous electrode catheter in young (n = 11) and middle-aged rats (n = 11) and middle-aged rats treated with either pilsicainide (1 mg/kg iv, n = 7) or amiodarone (10 mg/kg iv, n = 9). Degrees of interstitial fibrosis and cellular hypertrophy in the atria were assessed histologically. The P-wave duration and AERP were significantly longer and echocardiographic left atrial dimension significantly larger in middle-aged versus young rats. AF was inducible in >90% of all procedures in both untreated rat groups, whereas AF inducibility was reduced by the antiarrhythmic drugs. The AF duration was significantly longer in middle-aged than in young rats and was significantly shortened by treatment with either pilsicainide or amiodarone. Histologic analysis revealed significant increases in atrial interstitial fibrosis and cellular diameter in middle-aged versus young rats. Conclusions: Transvenous catheter-based AF is significantly longer in middle-aged than in young rats and is markedly reduced by treatment with antiarrhythmic drugs. This rat model of AF is simple, reproducible, and reliable for examining pharmacologic effects on AF and studying the process of atrial remodeling.(J Cardiovasc Electrophysiol, Vol. 21, pp. 88,93, January 2010) [source] Ranolazine Exerts Potent Effects on Atrial Electrical Properties and Abbreviates Atrial Fibrillation Duration in the Intact Porcine HeartJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 7 2009KAPIL KUMAR M.D. Introduction: In vitro studies and ambulatory ECG recordings from the MERLIN TIMI-36 clinical trial suggest that the novel antianginal agent ranolazine may have the potential to suppress atrial arrhythmias. However, there are no reports of effects of ranolazine on atrial electrophysiologic properties in large intact animals. Methods and Results: In 12 closed-chest anesthetized pigs, effects of intravenous ranolazine (,9 ,M plasma concentration) on multisite atrial effective refractory period (ERP), conduction time (CT), and duration and inducibility of atrial fibrillation (AF) initiated by intrapericardial acetylcholine were investigated. Ranolazine increased ERP by a median of 45 ms (interquartile range 29,50 ms; P < 0.05, n = 6) in right and left atria compared to control at pacing cycle length (PCL) of 400 ms. However, ERP increased by only 28 (24,34) ms in right ventricle (P < 0.01, n = 6). Ranolazine increased atrial CT from 89 (71,109) ms to 98 (86,121) ms (P = 0.04, n = 6) at PCL of 400 ms. Ranolazine decreased AF duration from 894 (811,1220) seconds to 621 (549,761) seconds (P = 0.03, n = 6). AF was reinducible in 1 of 6 animals after termination with ranolazine compared with all 6 animals during control period (P = 0.07). Dominant frequency (DF) of AF was reduced by ranolazine in left atrium from 11.7 (10.7,20.5) Hz to 7.6 (2.9,8.8) Hz (P = 0.02, n = 6). Conclusions: Ranolazine, at therapeutic doses, increased atrial ERP to greater extent than ventricular ERP and prolonged atrial CT in a frequency-dependent manner in the porcine heart. AF duration and DF were also reduced by ranolazine. Potential role of ranolazine in AF management merits further investigation. [source] Heterogeneity of Ventricular Fibrillation Dominant Frequency During Global Ischemia in Isolated Rabbit HeartsJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2007Ch.B. , JANE CALDWELL M.B. Introduction: Ventricular fibrillation (VF) studies show that ECG-dominant frequency (DF) decreases as ischemia develops. This study investigates the contribution of the principle ischemic metabolic components to this decline. Methods and Results: Rabbit hearts were Langendorff-perfused at 40 mL/min with Tyrode's solution and loaded with RH237. Epicardial optical action potentials were recorded with a photodiode array (256 sites, 15 × 15 mm). After 60 seconds of VF (induced by burst pacing), global ischemia was produced by low flow (6 mL/min), or the solution changed to impose hypoxia (95% N2/5% CO2), low pHo (6.7, 80% O2/20% CO2), or raised [K+]o (8 mM). DF of the optical signals was determined at each site. Conduction velocity (CV), action potential duration (APD90), effective refractory period (ERP), activation threshold, dV/dtmax, and membrane potential were measured in separate experiments during ventricular pacing. During VF, ischemia decreased DF in the left ventricle (LV) (to [58 ± 6]%, P < 0.001), but not the right (RV) ([93 ± 5]%). Raised [K+]o reproduced this DF pattern (LV: [67 ± 12]%, P < 0.001; RV: [95 ± 9]%). LV DF remained elevated in hypoxia or low pHo. During ventricular pacing, ischemia decreased CV in LV but not RV. Raised [K+]o did not change CV in either ventricle. Ischemia and raised [K+]o shortened APD90 without altering ERP. LV activation threshold increased in both ischemia and raised [K+]o and was associated with diastolic depolarization and decreased dV/dtmax. Conclusions: These results suggest that during VF, decreased ECG DF in global ischemia is largely due to elevated [K+]o affecting the activation thresholds in the LV rather than RV. [source] Dietary Fish Oil Protects Against Stretch-Induced Vulnerability to Atrial Fibrillation in a Rabbit ModelJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2005DANIEL M. NINIO M.B.B.S. Introduction: Dietary fish oil is thought to reduce sudden cardiac death by suppressing ventricular arrhythmias but little is known about its impact on atrial arrhythmias. We examined the effect of dietary fish oil on the rabbit model of stretch-induced vulnerability to atrial fibrillation (AF). Methods and Results: Six-week-old rabbits were fed standard rabbit pellets supplemented with 5% tuna fish oil (n = 6) or supplemented with 5% sunflower oil (n = 6) for 12 weeks. Six rabbits raised on the standard diet were used as controls. In Langendorff-perfused hearts intraatrial pressures were increased in a stepwise manner and rapid burst pacing applied to induce AF at increasing intraatrial pressures until AF was sustained (>1 minute). Atrial refractory periods were recorded at each pressure. Increased atrial pressure resulted in a reduction in atrial refractory period and a propensity for induction of sustained AF. Higher pressures were needed to induce and sustain AF in the fish oil group compared with the sunflower oil and control groups. The stretch-induced drop in refractory period was also less marked in the fish oil group. Red blood cell, atrial, and ventricular omega-3 fatty acid levels were significantly higher in the fish oil group. The ratio of atrial n-6/n-3 polyunsaturated fatty acids was 13 ± 0.9 with sunflower oil and 1.5 ± 0.01 with fish oil (P < 0.001). Conclusions: Incorporation of dietary omega-3 fatty acids into atrial tissue reduces stretch-induced susceptibility to AF. [source] Effect of Chronic Amiodarone Therapy on Excitable Gap During Typical Human Atrial FlutterJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2004PHILIPPE MAURY M.D. Introduction: Class I antiarrhythmic drugs increase duration of the excitable gap (EG) during typical atrial flutter whereas intravenous class III drugs decrease the EG. The effect of chronic oral amiodarone therapy on the EG is unknown. Methods and Results: EG was prospectively determined by introducing a premature stimulus and analyzing the response pattern during typical atrial flutter in 30 patients without antiarrhythmic drugs and in 20 patients under chronic oral amiodarone therapy. EG was calculated by the difference between the longest coupling interval leading to resetting and the effective atrial refractory period (EARP). A fully EG was defined by the portion of EG where the response curve of the return cycles was flat. A partially EG was defined by the portion of EG where the return cycle increases while coupling interval decreases. A resetting response curve was constructed by plotting the duration of the return cycle against the value of the coupling interval. Cycle length (CL; 222 ± 17 vs 267 ± 20 msec, P < 0.0001), EARP (128 ± 16 vs 152 ± 18 msec, P < 0.0001), and EG (54 ± 19 vs 70 ± 21 msec, P = 0.01) were significantly longer in patients taking amiodarone than in controls. Compared to CL, the relative part of the EARP (57 ± 7 vs 57 ± 6%, P = 0.96) and EG (24 ± 7 vs 26 ± 8%, P = 0.41) were comparable in both groups. The fully EG was larger in patients under chronic amiodarone therapy than in controls (39 ± 21 vs 26 ± 20 msec, P = 0.03). Neither duration of the partially EG (28 ± 15 vs 31 ± 15 msec, P = 0.42) nor slope of the ascending portion of the resetting response curve (1.15 ± 0.5 vs 1.13 ± 0.4 msec/msec, P = 0.71) differed between the two groups. Conclusion: EG in patients under chronic amiodarone therapy is significantly larger than in controls, mainly because of a longer fully EG. This observation may be explained by opposite effects on conduction velocity and refractoriness. [source] Reversal of Electrical Remodeling After Cardioversion of Persistent Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2004MERRITT H. RAITT M.D. Introduction: In animals, atrial fibrillation results in reversible atrial electrical remodeling manifested as shortening of the atrial effective refractory period, slowing of intra-atrial conduction, and prolongation of sinus node recovery time. There is limited information on changes in these parameters after cardioversion in patients with persistent atrial fibrillation. Methods and Results: Thirty-eight patients who had been in atrial fibrillation for 1 to 12 months underwent electrophysiologic testing 10 minutes and 1 hour after cardioversion. At 1 week, 19 patients still in sinus rhythm returned for repeat testing. Reverse remodeling of the effective refractory period was not uniform across the three atrial sites tested. At the lateral right atrium, there was a highly significant increase in the effective refractory period between 10 minutes and 1 hour after cardioversion (drive cycle length 400 ms: 204 ± 17 ms vs 211 ± 20 ms, drive cycle length 550 ms: 213 ± 18 ms vs 219 ± 23 ms, P < 0.001). The effective refractory period at the coronary sinus and distal coronary sinus did not change in the first hour but had increased by 1 week. The corrected sinus node recovery time did not change in the first hour but was shorter at 1 week (606 ± 311 ms vs 408 ± 160 ms, P = 0.009). P wave duration also was shorter at 1 week (135 ± 18 ms vs 129 ± 13 ms, P = 0.04) consistent with increasing atrial conduction velocity. Conclusion: The atrial effective refractory period increases, sinus node function improves, and atrial conduction velocity goes up in the first week after cardioversion of long-standing atrial fibrillation in humans. Reverse electrical remodeling of the effective refractory period occurs at different rates in different regions of the atrium. (J Cardiovasc Electrophysiol, Vol. 15, pp. 507-512, May 2004) [source] Inhibitors of the Na+/H+ Exchanger Cannot Prevent Atrial Electrical Remodeling in the GoatJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2004YURI BLAAUW M.D. Introduction: It has been suggested that blockade of the Na+/H+ exchanger (NHE1) can prevent atrial fibrillation (AF)-induced electrical remodeling and the development of AF. Methods and Results: AF was maintained by burst pacing in 10 chronically instrumented conscious goats. Intravenous and oral dosages of two NHE1 blockers (EMD87580 and EMD125021) resulted in plasma levels several magnitudes higher than required for effective NHE1 blockade. Shortening of atrial refractoriness immediately after 5 minutes of AF was not prevented by NHE1 blockade. In remodeled atria, increasing dosages of EMD87580 and EMD125021 did not reverse shortening of the atrial refractory period or reduce the duration of AF episodes. The cycle length during persistent AF also was not affected. Oral pretreatment with EMD87580 (8 mg/kg bid) starting 3 days before AF could not prevent electrical remodeling. After 24 and 48 hours of remodeling, the duration of AF paroxysms was 47 ± 32 seconds and 135 ± 63 seconds compared to 56 ± 17 seconds and 136 ± 52 seconds in placebo-treated animals (P > 0.8), respectively. Conclusion: In the goat model of AF, the Na+/H+ exchanger inhibitors EMD87580 and EMD125021 did not prevent or revert AF-induced electrical remodeling. This indicates that activation of the Na+/H+ exchanger is not involved in the intracellular pathways of electrical remodeling. This does not support the suggestion that blockers of the Na+/H+ exchanger may be beneficial for prevention and treatment of AF. (J Cardiovasc Electrophysiol, Vol. 15, pp. 440-446, April 2004) [source] Autonomic Blockade Unmasks Maturational Differences in Rate-Dependent Atrioventricular Nodal Conduction and Facilitation in the MouseJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 2 2003SAMIR SABA M.D. Maturational Differences in Murine AVN Conduction. Introduction: In large animals, rate-dependent AV nodal (AVN) properties of conduction are modulated by autonomic inputs. In this study, we investigated whether the properties of AVN conduction and facilitation are altered by autonomic blockade in the mouse and whether this effect is age dependent. Methods and Results: Young (age 4,6 weeks; n = 11) and adult (age 8,9 months; n = 11) female mice underwent in vivo electrophysiologic testing, before and after autonomic blockade. After autonomic blockade, the adult mice had significantly longer AVN effective refractory period (AVNERP; 67 ± 14 msec vs 56 ± 4 msec, P = 0.05) and functional refractory period (AVNFRP; 81 ± 10 msec vs 72 ± 4 msec, P = 0.05). With autonomic blockade, the increase from baseline of AVN Wenckebach cycle length (,AVW; 1.8 ± 8.1 msec vs 8.8 ± 3.3 msec, P = 0.04), as well as of AVNERP (,AVNERP; 3.5 ± 3.5 msec vs 21.4 ± 12.6 msec, P = 0.002) and AVNFRP (,AVNFRP; 2.3 ± 3.2 msec vs 12.8 ± 9.0 msec, P = 0.008), was significantly larger in adult than in young mice. Compared with young mice, adult mice were less likely to exhibit AVN facilitation (44% vs 90%, P = 0.03) and had smaller maximal shortening of AVN conduction times after the "test beat" for any coupling of the "facilitating beat" (4 ± 4 msec vs 7 ± 3 msec, P = 0.05). Conclusion: Complete autonomic blockade significantly increases AVN conduction times and refractory periods in adult but not in young mice. Adult mice also exhibit less AVN facilitation. Our results confirm that, like in larger animals, rate-dependent murine AVN properties of conduction are under autonomic regulation. Adult mice have higher sympathetic AVN inputs at baseline, leading to slower conduction after autonomic blockade. (J Cardiovasc Electrophysiol, Vol. 14, pp. 191-195, February 2003) [source] Identification and Characterization of Atrioventricular Parasympathetic Innervation in HumansJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2002KARA J. QUAN M.D. AV Parasympathetic Innervation.Introduction: We hypothesized that in humans there is an epicardial fat pad from which parasympathetic ganglia supply the AV node. We also hypothesized that the parasympathetic nerves innervating the AV node also innervate the right atrium, and the greatest density of innervation is near the AV nodal fat pad. Methods and Results: An epicardial fat pad near the junction of the left atrium and right inferior pulmonary vein was identified during cardiac surgery in seven patients. A ring electrode was used to stimulate this fat pad intraoperatively during sinus rhythm to produce transient complete heart block. Subsequently, temporary epicardial wire electrodes were sutured in pairs on this epicardial fat pad, the high right atrium, and the right ventricle by direct visualization during coronary artery bypass surgery in seven patients. Experiments were performed in the electrophysiology laboratory 1 to 5 days after surgery. Programmed atrial stimulation was performed via an endocardial electrode catheter advanced to the right atrium. The catheter tip electrode was moved in 1-cm concentric zones around the epicardial wires by fluoroscopic guidance. Atrial refractoriness at each catheter site was determined in the presence and absence of parasympathetic nerve stimulation (via the epicardial wires). In all seven patients, an AV nodal fat pad was identified. Fat pad stimulation during and after surgery caused complete heart block but no change in sinus rate. Fat pad stimulation decreased the right atrial effective refractory period at 1 cm (280 ± 42 msec to 242 ± 39 msec) and 2 cm (235 ± 21 msec to 201 ± 11 msec) from the fat pad (P = 0.04, compared with baseline). No significant change in atrial refractoriness occurred at distances > 2 cm. The response to stimulation decreased as the distance from the fat pad increased. Conclusion: For the first time in humans, an epicardial fat pad was identified from which parasympathetic nerve fibers selectively innervate the AV node but not the sinoatrial node. Nerves in this fat pad also innervate the surrounding right atrium. [source] Atrioventricular Nodal Reentrant Tachycardia in Children: Effect of Slow Pathway Ablation on Fast Pathway FunctionJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2002GEORGE F. VAN HARE M.D. AV Nodal Reentry in Children.Introduction: Prior studies in adults have shown significant shortening of the fast pathway effective refractory period after successful slow pathway ablation. As differences between adults and children exist in other characteristics of AV nodal reentrant tachycardia (AVNRT), we sought to characterize the effect of slow pathway ablation or modification in a multicenter study of pediatric patients. Methods and Results: Data from procedures in pediatric patients were gathered retrospectively from five institutions. Entry criteria were age < 21 years, typical AVNRT inducible with/without isoproterenol infusion, and attempted slow pathway ablation or modification. Dual AV nodal pathways were defined as those with > 50 msec jump in A2-H2 with a 10-msec decrease in A1-A2. Successful ablation was defined as elimination of AVNRT inducibility. A total of 159 patients (age 4.4 to 21 years, mean 13.1) were studied and had attempted slow pathway ablation. AVNRT was inducible in the baseline state in 74 (47%) of 159 patients and with isoproterenol in the remainder. Dual AV nodal pathways were noted in 98 (62%) of 159 patients in the baseline state. Ablation was successful in 154 (97%) of 159 patients. In patients with dual AV nodal pathways and successful slow pathway ablation, the mean fast pathway effective refractory period was 343 ± 68 msec before ablation and 263 ± 64 msec after ablation. Mean decrease in the fast pathway effective refractory period was 81 ± 82 msec (P < 0.0001) and was not explained by changes in autonomic tone, as measured by changes in sinus cycle length during the ablation procedure. Electrophysiologic measurements were correlated with age. Fast pathway effective refractory period was related to age both before (P = 0.0044) and after ablation (P < 0.0001). AV block cycle length was related to age both before (P = 0.0005) and after ablation (P < 0.0001). However, in dual AV nodal pathway patients, the magnitude of change in the fast pathway effective refractory period after ablation was not related to age. Conclusion: Lack of clear dual AV node physiology is common in pediatric patients with inducible AVNRT (38%). Fast pathway effective refractory period shortens substantially in response to slow pathway ablation. The magnitude of change is large compared with adult reports and is not completely explained by changes in autonomic tone. Prospective studies in children using autonomic blockade are needed. [source] Supervulnerable Phase Immediately After Termination of Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2002MATTIAS DUYTSCHAEVER M.D. Supervulnerable Phase After Termination of AF.Introduction: Recent studies with the implantable atrial cardioverter have shown that atrial fibrillation (AF) recurs almost immediately after successful cardioversion in about 27% of cases. In the present study, we determined the electrophysiologic properties of the caprine atrium immediately after spontaneous termination of AF both before and after 48 hours of AF-induced electrical remodeling. Methods and Results: In eight goats, atrial effective refractory period (AERP), intra-atrial conduction velocity, and atrial wavelength were measured during sinus rhythm both before (t = 0) and after 48 hours (t = 48) of electrically maintained AF (baseline). After baseline, a 5-minute paroxysm of AF was induced, during which the refractory period (RPAF) was determined. AERP, conduction velocity, and atrial wavelength also were measured immediately after spontaneous restoration of sinus rhythm (post-AF values). Both in normal and remodeled atria, immediately after AF, AERP and conduction velocity were markedly decreased compared with baseline (P < 0.01). In normal atria, post-AF AERP (107 ± 14 msec) gradually prolonged from its AF value (114 ± 17 msec) to its baseline value (138 ± 13 msec). Conduction velocity decreased from 130 ± 9 cm/sec to 117 ± 9 cm/sec. After 48 hours of AF, AERP had shortened to 74 ± 8 msec. RPAF was 89 ± 9 msec. Surprisingly, immediately after termination of AF, AERP shortened further to 58 ± 6 msec (P < 0.01). Post-AF conduction velocity decreased from 136 ± 11 cm/sec to 122 ± 10 cm/sec (P < 0.01). As a result, the post-AF atrial wavelength became as short as 7.1 ± 1 cm. These changes were transient, and all parameters gradually returned to baseline within 1 to 2 minutes after conversion of AF. Conclusion: Due to a combined decrease in AERP and conduction velocity, marked shortening of the atrial wavelength occurs during the first minutes after conversion of AF. In electrically remodeled atria, this results in a transient ultrashort value of AERP (< 60 msec) and atrial wavelength (7.1 cm). These observations imply a highly vulnerable substrate for reentry immediately after termination of AF. During this supervulnerable phase, both early and later premature beats reinitiated immediate recurrences of AF. [source] Effects of Estrogen on Cardiac Electrophysiology in Female MiceJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2002SAMIR SABA M.D. Estrogen and Cardiac Electrophysiology.Introduction: Understanding the molecular mechanisms that underlie gender- and hormonal-related differences in susceptibility to cardiac arrhythmias has been hampered by the lack of a suitable animal model. We examined the effect of hormonal status on the electrophysiologic (EP) properties of the mouse heart in an in vivo, closed chest model. Methods and Results: Fifty-three female C57/J mice aged 10 to 12 weeks were studied. Thirty-six mice underwent bilateral ovariectomies; 18 received estrogen (OVX + E) and 18 received placebo (OVX). Seventeen female mice underwent only sham surgery. All animals underwent in vivo EP studies. Select EP parameters were measured after quinidine treatment. Data were analyzed by a blinded observer. Compared with the intact female mice, the PR and AH intervals were significantly shorter in the OVX mice, and these parameters normalized with estrogen replacement (PR = 45.9 ± 4.5 msec in the intact mice, 42.1 ± 4.3 msec in the OVX group, and 46.9 ± 3.5 msec in the OVX + E group, P < 0.005; AH = 36.5 ± 4.9 msec in the intact mice, 34.4 ± 4.7 msec in the OVX group, and 38.8 ± 2.7 msec in the OVX + E group, P = 0.03). The right ventricular effective refractory period was significantly shorter in the OVX mice versus the intact mice, and this also normalized with estrogen replacement. Hormonal status did not significantly affect any other EP variable, including QT interval. Conclusion: In female mice, estrogen prolongs AV nodal conduction and the right ventricular effective refractory period. Taken together, these data suggest that hormonal status affects aspects of cardiac EP function. Future application of this mouse model will be helpful in determining the molecular pathways that mediate hormonal differences in cardiac EP. [source] Effect of Gender on Atrial Electrophysiologic Changes Induced by Rapid Atrial Pacing and Elevation of Atrial PressureJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 9 2001HUNG-FAT TSE M.D. Atrial Electrical Remodeling.Introduction: The incidence of atrial fibrillation is greater in men than in women, but the reasons for this gender difference are unclear. The purpose of this study was to evaluate the effects of gender on the atrial electrophysiologic effects of rapid atrial pacing and an increase in atrial pressure. Methods and Results: Right atrial pressure and effective refractory period (ERP) were measured during sinus rhythm and during atrial and simultaneous AV pacing at a cycle length of 300 msec in 10 premenopausal women, 11 postmenopausal women, and 24 men. The postmenopausal women were significantly older than the premenopausal women (61 ± 8 years vs 34 ± 10 years; P < 0.01). During sinus rhythm, mean atrial ERP in premenopausal women was shorter (211 ± 19 msec) than in postmenopausal women and age-matched men (242 ± 18 msec and 246 ± 34 msec, respectively; P < 0.05). Atrial ERPs in all patients shortened significantly during atrial and simultaneous AV pacing. However, the degree of shortening during atrial pacing (43 ± 8 msec vs 70 ± 20 msec and 74 ± 21 msec; P < 0.05) and during simultaneous AV pacing (48 ± 16 msec vs 91 ± 27 msec and 84 ± 26 msec; P < 0.05) was significantly less in premenopausal women than in postmenopausal women or age-matched men. Conclusion: The results of this study demonstrate a significant gender difference in atrial electrophysiologic changes in response to rapid atrial pacing and an increase in atrial pressure. The effect of menopause on the observed changes suggests that the gender differences may be mediated by the effects of estrogen on atrial electrophysiologic properties. [source] Atrial Fibrillation in the Goat Induces Changes in Monophasic Action Potential and mRNA Expression of Ion Channels Involved in RepolarizationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2000HUUB M.W. VAN DER VELDEN PH.D. MAP Changes and Ion Channel Expression in Goat AF. Introduction: Sustained atrial fibrillation (AF) is characterized by a marked shortening of the atrial effective refractory period (AKRP) and a decrease or reversal of its physiolonic adaptation to heart rate. The aim of the present study was to investigate whether the AF-induced changes in AKKP in the goat are associated with changes in the atrial monophasic action potential (MAP) and whether an abnormal expression of specific ion channels underlies such changes. Methods and Results: Following thoracotomy, MAPs were recorded from the free wall of the right atrium hoth before induction of AF (control) and after cardioversion of sustained AF (>2 months) in chronically instrumented goats. In control goats. MAP duration at 80% repolarization (MAPD80) shortened (P < 0.01) from 132 ± 4 msec during slow pacing (400-msec interval) to 86 ± 10 msec during fast pacing (180 msec). After cardioversion of sustained AF, the MAPD80, during slow pacing was as short as 67 ± 5 msec (electrical remodeling). Increasing the pacing rate resulted in prolongation (P = 0.02) of the MAPD80 to 91 ± 6 msec. Also. MAPD20 (20% repolarization) shortened (P = 0.05) from 32 ± 4 msec (400 msec) to 14 ± 7 msec (180 msec) in the control goats, whereas it prolonged (P = 0.03) from 20 ± 3 msec (400 msec) to 33 ± 5 msec (180 msec) in sustained AF, mRNA expression of the L-type Ca2+ channel ,1c gene and Kv1.5 potassium channel gene, which underlie Ica, and Ikur respectively, was reduced in sustained.AF compared with sinus rhythm hy 32% (P = 0.01) and 45% (P < 0.01). respectively. No significant changes were found in the mRNA levels of the rapid Na+ channel, the Na+/Ca2+ exchanger, or the Kv4.2/4.3 channels responsible for I10. Conclusion: AF-induced electrical remodeling in the goat comprises shortening of MAPD and reversal of its physiologic rate adaptation. Changes in the time course of reploarization of the action potential are associated with changes in mRNA expression of the , subunit genes of the L.-type Ca2+ channel and the Kvl.5 potassium channel. [source] Atrial, SA Nodal, and AV Nodal Electrophysiology in Standing Horses: Normal Findings and Electrophysiologic Effects of Quinidine and DiltiazemJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2007Colin C. Schwarzwald Background: Although atrial arrhythmias are clinically important in horses, atrial electrophysiology has been incompletely studied. Hypotheses: Standard electrophysiologic methods can be used to study drug effects in horses. Specifically, the effects of diltiazem on atrioventricular (AV) nodal conduction are rate-dependent and allow control of ventricular response rate during rapid atrial pacing in horses undergoing quinidine treatment. Animals: Fourteen healthy horses. Methods: Arterial blood pressure, surface electrocardiogram, and right atrial electrogram were recorded during sinus rhythm and during programmed electrical stimulation at baseline, after administration of quinidine gluconate (10 mg/kg IV over 30 minutes, n = 7; and 12 mg/kg IV over 5 minutes followed by 5 mg/kg/h constant rate infusion for the remaining duration of the study, n = 7), and after coadministration of diltiazem (0.125 mg/kg IV over 2 minutes repeated every 12 minutes to effect). Results: Quinidine significantly prolonged the atrial effective refractory period, shortened the functional refractory period (FRP) of the AV node, and increased the ventricular response rate during atrial pacing. Diltiazem increased the FRP, controlled ventricular rate in a rate-dependent manner, caused dose-dependent suppression of the sinoatrial node and produced a significant, but well tolerated decrease in blood pressure. Effective doses of diltiazem ranged from 0.125 to 1.125 mg/kg. Conclusions and Clinical Importance: Standard electrophysiologic techniques allow characterization of drug effects in standing horses. Diltiazem is effective for ventricular rate control in this pacing model of supraventricular tachycardia. The use of diltiazem for rate control in horses with atrial fibrillation merits further investigation. [source] Lateral spread response elicited by double stimulation in patients with hemifacial spasmMUSCLE AND NERVE, Issue 6 2002Shinya Yamashita MD Abstract In patients with hemifacial spasm (HFS), a lateral spread response (or abnormal muscle response) is recorded from facial muscles after facial nerve stimulation. The origin of this response is not completely understood. We studied the lateral spread responses elicited by double stimulation in 12 patients with HFS during microvascular decompression. The response was recorded from the mentalis muscle by electrical stimulation of the temporal branch of the facial nerve or from the orbicularis oculi muscles by stimulation of the marginal mandibular branch. The interstimulus intervals (ISIs) of double stimulation ranged from 0.5 to 7.0 ms. R1 was defined as the response elicited by the first stimulus, and R2 as the response elicited by the second stimulus. R1 had a constant latency and amplitude regardless of the ISI, whereas R2 appeared after a fixed refractory period without facilitation or depression in a recovery curve of latency and amplitude. From these findings, we consider that the lateral spread response is due to cross-transmission of facial nerve fibers at the site of vascular compression rather than arising from facial nerve motor neurons. © 2002 Wiley Periodicals, Inc. Muscle Nerve 25: 000,000, 2002 [source] Abnormal Atrioventricular Node Conduction and Atrioventricular Nodal Reentrant Tachycardia in Patients Older Versus Younger Than 65 Years of AgePACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2009MIHAELA GRECU M.D. Study Objective: We examined the possible role of atrioventricular node (AVN) conduction abnormalities as a cause of AVN reentrant tachycardia (RT) in patients >65 years of age. Study Population: Slow pathway radiofrequency catheter ablation (RFCA) was performed in 104 patients. Patients in group 1 (n = 14) were >65 years of age and had AV conduction abnormalities associated with structural heart disease. Patients in group 2 (n = 90) were <65 years of age and had lone AVNRT. Results: Patients in group 1 versus group 2 (66% vs. 46% men) had a first episode of tachycardia at an older age than in group 2 (68 ± 16.8 vs 32.5 ± 18.8 years, P = 0.007). The history of arrhythmia was shorter in group 1 (5.4 ± 3.8 vs 17.5 ± 14, P = 0.05) and was associated with a higher proportion of patients with underlying heart disease than in group 2 (79% vs 3%, P < 0.001). The electrophysiological measurements were significantly shorter in group 2: atrial-His interval (74 ± 17 vs 144 ± 44 ms, P = 0.005), His-ventricular (HV) interval (41 ± 5 vs 57 ± 7 ms, P = 0.001), Wenckebach cycle length (329 ± 38 vs 436 ± 90 ms, P = 0.001), slow pathway effective refractory period (268 ± 7 vs 344 ± 94 ms, P = 0.005), and tachycardia cycle length (332 ± 53 vs 426 ± 56 ms, P = 0.001). The ventriculoatrial block cycle length was similar in both groups. The immediate procedural success rate was 100% in both groups, and no complication was observed in either group. One patient in group 2 had recurrence of AVNRT. One patient with a 98-ms HV interval underwent permanent VVI pacemaker implantation before RFCA procedure. Conclusion: In patients undergoing RFCA for AVNRT at >65 years of age had a shorter history of tachycardia-related symptoms than patients with lone AVNRT. The longer AVN conduction intervals and refractory period might explain the late development of AVNRT in group 1. [source] The Electrophysiological Characteristics in Patients with Ventricular Stimulation Inducible Fast-Slow Form Atrioventricular Nodal Reentrant TachycardiaPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 10 2006PI-CHANG LEE M.D. Background: Atrioventricular nodal reentrant tachycardia (AVNRT) can usually be induced by atrial stimulation. However, it seldom may be induced with only ventricular stimulation, especially the fast-slow form of AVNRT. The purpose of this retrospective study was to investigate the specific electrophysiological characteristics in patients with the fast-slow form of AVNRT that could be induced with only ventricular stimulation. Methods: The total population consisted of 1,497 patients associated with AVNRT, and 106 (8.4%) of them had the fast-slow form of AVNRT and 1,373 (91.7%) the slow-fast form of AVNRT. In patients with the fast-slow form of AVNRT, the AVNRT could be induced with only ventricular stimulation in 16 patients, Group 1; with only atrial stimulation or both atrial and ventricular stimulation in 90 patients, Group 2; and with only atrial stimulation in 13 patients, Group 3. We also divided these patients with slow-fast form AVNRT (n = 1,373) into two groups: those that could be induced only by ventricular stimulation (Group 4; n = 45, 3%) and those that could be induced by atrial stimulation only or by both atrial and ventricular stimulation (n = 1.328, 97%). Results: Patients with the fast-slow form of AVNRT that could be induced with only ventricular stimulation had a lower incidence of an antegrade dual AVN physiology (0% vs 71.1% and 92%, P < 0.001), a lower incidence of multiple form AVNRT (31% vs 69% and 85%, P = 0.009), and a more significant retrograde functional refractory period (FRP) difference (99 ± 102 vs 30 ± 57 ms, P < 0.001) than those that could be induced with only atrial stimulation or both atrial and ventricular stimulation. The occurrence of tachycardia stimulated with only ventricular stimulation was more frequently demonstrated in patients with the fast-slow form of AVNRT than in those with the slow-fast form of AVNRT (15% vs 3%, P < 0.001). Patients with the fast-slow form of AVNRT that could be induced with only ventricular stimulation had a higher incidence of retrograde dual AVN physiology (75% vs 4%, P < 0.001), a longer pacing cycle length of retrograde 1:1 fast and slow pathway conduction (475 ± 63 ms vs 366 ± 64 ms, P < 0.001; 449 ± 138 ms vs 370 ± 85 ms, P = 0.009), a longer retrograde effective refractory period of the fast pathway (360 ± 124 ms vs 285 ± 62 ms, P = 0.003), and a longer retrograde FRP of the fast and slow pathway (428 ± 85 ms vs 362 ± 47 ms, P < 0.001 and 522 ± 106 vs 456 ± 97 ms, P = 0.026) than those with the slow-fast form of AVNRT that could be induced with only ventricular stimulation. Conclusion: This study demonstrated that patients with the fast-slow form of AVNRT that could be induced with only ventricular stimulation had a different incidence of the antegrade and retrograde dual AVN physiology and the specific electrophysiological characteristics. The mechanism of the AVNRT stimulated only with ventricular stimulation was supposed to be different in patients with the slow-fast and fast-slow forms of AVNRT. [source] Electrophysiologic Characteristics and Radiofrequency Catheter Ablation in Children with Wolff-Parkinson-White SyndromePACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2006PI-CHANG LEE Background: The majority of cardiac arrhythmias in children are supraventricular tachycardia, which is mainly related to an accessory pathway (AP)-mediated reentry mechanism. The investigation for Wolff-Parkinson-White (WPW) syndrome in adults is numerous, but there is only limited information for children. This study was designed to evaluate the specific electrophysiologic characteristics and the outcome of radiofrequency (RF) catheter ablation in children with WPW syndrome. Methods: From December 1989 to August 2005, a total of 142 children and 1,219 adults with atrioventricular reentrant tachycardia (AVRT) who underwent ablation at our institution were included. We compared the clinical and electrophysiologic characteristics between children and adults with WPW syndrome. Results: The incidence of intermittent WPW syndrome was higher in children (7% vs 3%, P=0.025). There was a higher occurrence of rapid atrial pacing needed to induce tachycardia in children (67% vs 53%, P=0.02). However, atrial fibrillation (AF) occurred more commonly in adult patients (28% vs 16%, P = 0.003). The pediatric patients had a higher incidence of multiple pathways (5% vs 1%, P < 0.001). Both the onset and duration of symptoms were significantly shorter in the pediatric patients. The antegrade 1:1 AP conduction pacing cycle length (CL) and antegrade AP effective refractory period (ERP) in children were much shorter than those in adults with manifest WPW syndrome. Furthermore, the retrograde 1:1 AP conduction pacing CL and retrograde AP ERP in children were also shorter than those in adults. The antegrade 1:1 atrioventricular (AV) node conduction pacing CL, AV nodal ERP, and the CL of the tachycardia were all shorter in the pediatric patients. Conclusion: This study demonstrated the difference in the electrophysiologic characteristics of APs and the AV node between pediatric and adult patients. RF catheter ablation was a safe and effective method to manage children with WPW syndrome. [source] Electrophysiological Remodeling in Human Atrial FibrillationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 7p2 2003DAVID R. VAN WAGONER Atrial fibrillation (AF) is a progressive disease characterized by cumulative electrophysiological and structural remodeling of the atria. Cellular electrophysiological studies have revealed marked reductions in the densities of the L-type voltage-gated Ca2+ current, ICa,L, the transient outward K+ current, ITO, and the ultra-rapid delayed rectifier K+ current, IKur, in atrial myocytes from patients in persistent or permanent AF. The density of the muscarinic K+ current (IKACh) is also reduced, however the inward rectifier K+ current (IK1) density is increased. The net shortening or lengthening of the action potential is dependent on the balance between changes in inward and outward currents. The prominent reduction in ICa,L appears to be sufficient to explain the observed decreases in action potential duration and effective refractory period that are characteristic of the fibrillating atria. Earlier studies have shown that calcium overload and perturbations in calcium handling play prominent roles in AF induced atrial remodeling. More recently, we have shown that AF is associated with evidence of oxidative injury to atrial tissue, and suggested that oxidative stress may directly contribute to the pathophysiology of AF. It is anticipated that insights gleaned from mechanistic studies will facilitate the development of improved pharmacological approaches to treat AF and to prevent the progression of arrhythmia. (PACE 2003; 26[Pt. II]:1572,1575) [source] Relation of Age and Sex to Atrial Electrophysiological Properties in Patients with No History of Atrial FibrillationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2003KOICHI SAKABE Although atrial fibrillation is a common arrhythmia, especially in elderly men, little is known about age related changes in atrial electrophysiological properties or gender differences. The aim of this study was to analyze the effects of aging on vulnerability to atrial fibrillation and assessed gender differences in those age related changes. An electrophysiological study was performed on 73 patients with no history of atrial fibrillation, structural heart disease, or conditions with potential effects on cardiac hemodynamic or electrophysiological function, including 25 women (mean age 49 ± 18 years; range 12,84 years). The following atrial excitability parameters were assessed: spontaneous or paced (A1) and extrastimulated (A2) atrial electrogram widths, percent maximum atrial fragmentation(A2/A1 × 100), effective refractory period, wavelength index (effective refractory period/A2), and inducibility of atrial fibrillation. There were no significant differences in percent maximum atrial fragmentation (143 ± 28vs142 ± 35%), effective refractory period (241 ± 39vs238 ± 50 ms), wavelength index (2.9 ± 0.8vs3.1 ± 0.9), induction of atrial fibrillation (10 [21%] vs 7 [28%]), or age (50 ± 17vs 49 ± 20 years) between men and women. Age was not statistically different between those patients with and without induction of atrial fibrillation in men (48 ± 14vs50 ± 18 years) and women (48 ± 18vs49 ± 21 years). Percent maximum atrial fragmentation and effective refractory period were directly correlated with age in men (r = 0.35, P = 0.01; r = 0.46, P < 0.001, respectively) and women (r = 0.42, P = 0.04; r = 0.45, P = 0.02, respectively), though wavelength index did not correlate with age in men (r =,0.04) or women (r =,0.04) with no history of atrial fibrillation. Considering these findings, the authors conclude that the mechanism triggering atrial fibrillation may be different between older and younger patients with atrial fibrillation, because younger patients who have no marked substrate for atrial fibrillation may need many trigger beats to induce atrial fibrillation. (PACE 2003; 26:1238,1244) [source] Impact and Prevention of Far-Field Sensing in Fallback Mode SwitchesPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1p2 2003PIERRE BORDACHER BORDACHAR, P., et al.: Impact and Prevention of Far-Field Sensing in Fallback Mode Switches.Far-field oversensing (FFOS) promoted by high atrial sensitivity and short atrial refractory periods induces false positive mode switches. We evaluated the incidence of ventricular FFOS in a population of DDD paced patients. Methods: One hundred thirty-seven patients (71 ± 10years, 76 men) implanted with a Talent DR pacemaker were studied. Before discharge, an analysis of internal data stored in the memories of the PM was performed by the specific software incorporated in the programmer in parallel with a 24-hour Holter recording. Data were validated by a panel of experts. One and 4 months follow-up was based only on the data stored in the PM memories. Results: Pacing indications were atrioventricular block(n = 75), sinus node dysfunction(n = 57), and other(n = 5). Sustained far-field oversensing was observed in 12/137 patients (9%). Out of a total of 3,511 triggered mode switch episodes, FFOS accounted for 20% and 7% of a 311 days cumulative time in mode switch. Inappropriate mode switch episodes induced by far-field were more numerous but shorter than episodes prompted by atrial arrhythmias. Atrial sensitivity was increased in eight patients, successfully in four. Reprogramming of the atrial refractory period(156 ± 11 ms)was successful in five of six patients. Conclusions: A 9% rate of ventricular FFOS was observed in an unselected population, easily and automatically diagnosed using the internal memory function and the automatic analysis provided by the programmer. Prolongation of the atrial refractory period was more effective than resetting of the atrial sensitivity in eliminating FFOS. (PACE 2003; 26[Pt. II]:206,209) [source] Electrocardiograms from the Turtle to the Elephant that Illustrate Interesting Physiological PhenomenaPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 12 2002L.A. GEDDES GEDDES, L.A. Electrocardiograms From the Turtle to the Elephant that Illustrate Interesting Physiological Phenomena. This article describes a collection of ECGs from many species obtained over the past 50 years. Presented are ECGs of species in which the pacemaker is a separate contractile chamber with its own action and recovery potentials. In such species, pacemaker atrial and AV block can be produced. Shortening of the atrial refractory period and the negative inotropic effect can be produced by vagal stimulation. The cardiac electrogram and stroke volume are recorded from the turtle heart. The ECG and respiration were recorded from the snake. ECG records were obtained from the anesthetized and decapitated housefly. ECG records of the rabbit show slowing when the nose encountered irritating vapors. Records from a dog with atrial fibrillation exhibit rhythmic fibrillation frequency changes correlated with respiration. In addition, in a morphinized dog with atrial fibrillation, impulses crossed the AV node only during inspiration. The ECGs of a cow and camel exhibit long P-R intervals and biphasic P waves. Finally the elephant ECG shows a clear U wave following the T wave. [source] Effect of Different Pacing Protocols on the Induction of Atrial Fibrillation in a Transvenously Paced Sheep ModelPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 6 2001RIK WILLEMS WILLEMS, R. et al.: Effect of Different Pacing Protocols on the Induction of Atrial Fibrillation in a Transvenously Paced Sheep Model. In different animal models rapid atrial stimulation led to a shortening and maladaptation to rate of the atrial effective refractory period (AERP). This atrial electrical remodeling resulted in an increased vulnerability to atrial fibrillation (AF). These experimental findings formed the rationale for a stringent pursuit of sinus rhythm in patients with AF, since this would prevent or reverse atrial remodeling. This study tested the hypothesis that a reduction of arrhythmia burden would lead to a decreased vulnerability for AF. Different rapid atrial pacing protocols in a sheep model were used. During 15 weeks, 13 animals were continuously rapid paced and 7 animals were intermittently burst-paced, resulting in rapid atrial activation during 100% versus 33 ± 4% of the time, respectively. In the continuously paced group, 77% of the animals developed sustained AF (i.e., >1 hour) versus only 29% in the burst-paced group (P < 0.05). However, there was no difference in mean AERP shortening over time, nor maximal AERP shortening per animal, between both protocols. Minimal AERP was 103 ± 5 ms in the continuously paced group and 107 ± 5 in the burst-paced group (P = NS). Significant changes could be identified in effect on P wave duration, AVN function, and atrial dilation. Conduction slowing was more pronounced in the continuously paced group with a maximal P wave duration of 136 ± 4 ms in this group versus 116 ± 5 in the burst-paced group (P < 0.05). In the continuously paced group, the right atrial area significantly increased from 2.5 ± 0.1 cm2 at baseline to 4.2 ± 0.2 cm2. In the burst-paced group there was no significant atrial dilatation (from 2.6 ± 0.1 to 2.8 ± 0.1 cm2). In conclusion, limiting atrial arrhythmia burden slowed the development of sustained AF in this sheep model. This was not mediated by a decreased influence on atrial refractoriness but seemed to be dependent on smaller changes in atrial conduction and dimensions. [source] Clinical Significance of the Atrial Fibrillation Threshold in Patients with Paroxysmal Atrial FibrillationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2001KEIJI INOUE INOUE, K., et al.: Clinical Significance of the Atrial Fibrillation Threshold in Patients with Paroxysmal Atrial Fibrillation. AF threshold and the other electrophysiological parameters were measured to quantify atrial vulnerability in patients with paroxysmal atrial fibrillation (PAF, n = 47), and those without AF (non-PAF, n = 25). Stimulations were delivered at the right atrial appendage with a basic cycle length of 500 ms. The PAF group had a significantly larger percentage of maximum atrial fragmentation (%MAF, non-PAF: mean ± SD = 149 ± 19%, PAF: 166 ± 26%, P = 0.009), fragmented atrial activity zone (FAZ, non-PAF: median 0 ms, interquartile range 0,20 ms, PAF: 20 ms, 10,40 ms, P = 0.008). Atrial fibrillation threshold (AF threshold, non-PAF: median 11 mA, interquartile range 6,21 mA, PAF: 5 mA, 3,6 mA, P < 0.001) was smaller in the PAF group than in the non-PAF group. Sensitivity, specificity, and positive predictive value of electrophysiological parameters were as follows, respectively: %MAF (cut off at 150%, 78%, 52%, 76%), FAZ (cut off at 20 ms, 47%, 84%, 85%), AF threshold (cut off at 10 mA, 94%, 60%, 81%). There were no statistically significant differences between the non-PAF and PAF groups in the other parameters (effective refractory period, interatrial conduction time, maximum conduction delay, conduction delay zone, repetitive atrial firing zone, wavelength index), that were not specific for PAF. In conclusion, the AF threshold could be a useful indicator to evaluate atrial vulnerability in patients with AF. [source] Atrial Fibrillation Induction and Determination of Atrial Vulnerable Period Using Very Low Energy Synchronized Biatrial Shock in Normal Subjects and in Patients with Atrial FibrillationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 4 2000HUNG-FAT TSE The atrial vulnerable periods (A VP)for shock induction of atrial fibrillation (AF) in humans have not been clearly defined. Furthermore, the safety and efficacy of using low energy biatrial shock delivered transvenously for AF induction are unknown. We tested the safety and efficacy of using very low energy biatrial shocks, delivered between the right atrium and the coronary sinus for AF induction and used this technique to characterize the A VP in nine controls and nine patients with AF. Thirty-volt and 60-V 3/3-ms biphasic shocks were delivered, starting from 50 ms before the atrial effective refractory period with 20-ms increments until the end of the QRS interval to determine the AVP front, AVP end, and the AVP duration. Successful AF induction could be achieved in eight (89%) of the nine controls and in nine (100%) of the nine patients with AF without any complication. In patients with AF, the AVP front started significantly earlier within the QRS complex, and the AVP duration and the AVP duration/QRS percent ratios were also significantly greater as compared to controls. Furthermore, a higher induction shock energy in patients with AF was associated with an increase in AF inducibility and significantly increased the AVP duration and A VP duration/QRS percent ratio as compared to the controls. This study demonstrated the safe and efficacy of delivering a very low energy biatrial shock during the AVP within the R wave for AF induction. The characteristics of A VP in patients with AF were significantly different from normal subjects. [source] Prevention of the Initiation of Atrial Fibrillation: Mechanism and Efficacy of Different Atrial Pacing ModesPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2000WEN-CHUNG YU Several atrial pacing modes have been reported to be effective in the prevention of atrial fibrillation (AF); they included biatrial pacing, dual site right atrial pacing, Bachmann's bundle (BB) pacing, and coronary sinus pacing. However, the relative efficacy and electrophysiological mechanisms of these pacing modes in the prevention of AF are not clear. In 15 patients (age 54 ± 14 years) with paroxysmal AF, P wave duration, effective refractory period, and atrial conduction time were determined with six different atrial drive pacings, that were right atrial appendage (RAA), BB, right posterior interatrial septum (RPS), distal coronary sinus (DCS), RAA plus RPS simultaneously (DSA), and RAA plus DCS simultaneously (BiA). All these patients consistently had AF induced with early RAA extrastimulation coupling to RAA drive pacing. No patient had AF induced with RAA extrastimulation coupled to BB, RPS, or DCS drive pacing, but seven and eight patients had AF induced with RAA extrastimulation coupled to DSA and BiA drive pacing, respectively. The P wave duration was longest during RAA pacing, and became shorter during other atrial pacing modes. Analysis of electrophysiological change showed that early RAA extrastimulation coupled to RAA drive pacing caused the longest atrial conduction delay among these atrial pacing modes; BB, RPS, and DCS drive pacing caused a greater reduction of this conduction delay than DSA and BiA drive pacing. In addition, the effective refractory periods of RAA determined with BB, RPS, and DCS drive pacing were similar and longer than that determined with DSA and BiA drive pacing. In patients with paroxysmal AF, this arrhythmia was readily induced with RAA extrastimuli coupled to RAA drive pacing. BB, RPS, and DCS pacing were similar and more effective than DSA and BiA pacing in preventing AF. [source] |