Reflection Images (reflection + image)

Distribution by Scientific Domains


Selected Abstracts


Diffraction imaging in depth

GEOPHYSICAL PROSPECTING, Issue 5 2008
T.J. Moser
ABSTRACT High resolution imaging is of great value to an interpreter, for instance to enable identification of small scale faults, and to locate formation pinch-out positions. Standard approaches to obtain high-resolution information, such as coherency analysis and structure-oriented filters, derive attributes from stacked, migrated images. Since they are image-driven, these techniques are sensitive to artifacts due to an inadequate migration velocity; in fact the attribute derivation is not based on the physics of wave propagation. Diffracted waves on the other hand have been recognized as physically reliable carriers of high- or even super-resolution structural information. However, high-resolution information, encoded in diffractions, is generally lost during the conventional processing sequence, indeed migration kernels in current migration algorithms are biased against diffractions. We propose here methods for a diffraction-based, data-oriented approach to image resolution. We also demonstrate the different behaviour of diffractions compared to specular reflections and how this can be leveraged to assess characteristics of subsurface features. In this way a rough surface such as a fault plane or unconformity may be distinguishable on a diffraction image and not on a traditional reflection image. We outline some characteristic properties of diffractions and diffraction imaging, and present two novel approaches to diffraction imaging in the depth domain. The first technique is based on reflection focusing in the depth domain and subsequent filtering of reflections from prestack data. The second technique modifies the migration kernel and consists of a reverse application of stationary-phase migration to suppress contributions from specular reflections to the diffraction image. Both techniques are proposed as a complement to conventional full-wave pre-stack depth migration, and both assume the existence of an accurate migration velocity. [source]


High-resolution seismic and ground penetrating radar,geophysical profiling of a thermokarst lake in the western Lena Delta, Northern Siberia

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2002
G. J. Schwamborn
Abstract High-resolution seismic and ground-penetrating-radar (GPR) data have been acquired over Lake Nikolay in the western Lena Delta in order to study the uppermost basin fill and the bordering frozen margins. GPR (100 MHz antenna pair) measurements were completed on the frozen lake and its permafrost margins, while high-resolution seismic data were acquired from the lake during open-water conditions in summer using a 1.5,11.5 kHz Chirp profiler. The combined use of the two profiling systems allows stratigraphic profiling in both frozen and unfrozen parts of the lake. Shallow seismic reflection images of the uppermost 4 to 5 m of sediments are compared to GPR sections, which have approximately the same horizontal and vertical resolution. Short sediment cores aid calibrate the geophysical data. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Rapid seismic reflection imaging at the Clovis period Gault site in central Texas

ARCHAEOLOGICAL PROSPECTION, Issue 4 2007
John A. Hildebrand
Abstract Using a modified seismic reflection imaging system with rapid translation of receivers, stratigraphic profiles were collected at the Gault site in central Texas. For rapid data collection, spikeless geophone receivers were placed in sand-filled bags at tight spacing, and these receivers were rapidly pulled along the ground surface between shots. Shots were produced by a small hammer strike to a vertical pipe at 20-cm intervals. High quality ultrashallow seismic reflection profiles were collected at a rate of 25,m,h,1, significantly faster than what is possible with conventional seismic reflection imaging using individually planted geophones. Ground-penetrating radar was attempted, but abandoned owing to the poor penetration of the radar signals in the clay soils present at the Gault site. Electromagnetic induction grids were collected surrounding each seismic reflection profile, and provided information on near-surface ground water. Seismic reflection images of Gault site stratigraphy provided greater depth penetration than accessible from backhoe trenching and coring, and helped to better outline the site geological context. Seismic images reveal coherent reflections at shallow depths (0,2.5,m), and extensive scattering at deeper levels (2.5,8,m), underlain by reflection-free zones. These data are interpreted as clay and gravel layers overlaying palaeostream channels carved into the limestone bedrock. Where comparative data were available, the geophysical findings were corroborated by observations of site stratigraphy in archaeological excavation units, backhoe trenches and cores. Seismic reflection studies at the Gault site revealed a palaeochannel filled with pre-Clovis age sediments. Pre-Clovis age sediments are not known to occur at other locations within the Gault site. They provide a unique opportunity to test for cultural remains of great antiquity. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Combined seismic tomographic and ultrashallow seismic reflection study of an Early Dynastic mastaba, Saqqara, Egypt

ARCHAEOLOGICAL PROSPECTION, Issue 4 2005
Mohamed Metwaly
Abstract Mastabas were large rectangular structures built for the funerals and burials of the earliest Pharaohs. One such mastaba was the basic building block that led to the first known stone pyramid, the,>4600-year old Step Pyramid within the Saqqara necropolis of Egypt. We have tested a number of shallow geophysical techniques for investigating in a non-invasive manner the subsurface beneath a large Early Dynastic mastaba located close to the Step Pyramid. After discovering that near-surface sedimentary rocks with unusually high electrical conductivities precluded the use of the ground-penetrating radar method, a very high-resolution seismic data set was collected along a profile that extended the 42.5,m length of the mastaba. A sledgehammer source was used every 0.2,m and the data were recorded using a 48-channel array of single geophones spaced at 0.2,m intervals. Inversions of the direct- and refracted-wave travel times provided P-wave velocity tomograms of the shallow subsurface, whereas relatively standard processing techniques yielded a high-fold (50,80) ultrashallow seismic reflection section. The tomographic and reflection images were jointly interpreted in terms of loose sand and friable limestone layers with low P-wave velocities of 150,650,m,s,1 overlying consolidated limestone and shale with velocities,>,1500,m,s,1. The sharp contact between the low- and high-velocity regimes was approximately horizontal at a depth of ca. 2,m. This contact was the source of a strong seismic reflection. Above this contact, the velocity tomogram revealed moderately high velocities at the surface location of a friable limestone outcrop and two low-velocity blocks that probably outlined sand-filled shafts. Below the contact, three regularly spaced low velocity blocks probably represented tunnels and/or subsurface chambers. Copyright © 2005 John Wiley & Sons, Ltd. [source]