Home About us Contact | |||
Reflection Data (reflection + data)
Kinds of Reflection Data Selected AbstractsData Preparation for Real-time High Quality Rendering of Complex ModelsCOMPUTER GRAPHICS FORUM, Issue 3 2006Reinhard Klein The capability of current 3D acquisition systems to digitize the geometry reflection behaviour of objects as well as the sophisticated application of CAD techniques lead to rapidly growing digital models which pose new challenges for interaction and visualization. Due to the sheer size of the geometry as well as the texture and reflection data which are often in the range of several gigabytes, efficient techniques for analyzing, compressing and rendering are needed. In this talk I will present some of the research we did in our graphics group over the past years motivated by industrial partners in order to automate the data preparation step and allow for real-time high quality rendering e.g. in the context of VR-applications. Strength and limitations of the different techniques will be discussed and future challenges will be identified. The presentation will go along with live demonstrations. [source] Lithology and fluid prediction from amplitude versus offset (AVO) seismic dataGEOFLUIDS (ELECTRONIC), Issue 4 2003D. J. Davies Abstract Seismic reflection data as used in the oil industry is acquired and processed as multitrace data with source-receiver offsets from a few hundred metres (short offset) to several kilometres (long offset). This set of data is referred to as ,pre-stack'. The traces are processed by velocity analysis, migration and stacking to yield a data volume of traces with ,zero-offset'. The signal-to-noise enhancement resulting from this approach is very significant. However, reflection amplitude changes in the pre-stack domain may also be analysed to yield enhanced rock physics parameter estimates. Pre-stack seismic data is widely used to predict lithology, reservoir quality and fluid distribution in exploration and production studies. Amplitude versus offset (AVO) data, especially anomalous signals, have been used for decades as indicators of hydrocarbon saturation and favourable reservoir development. Recently, enhanced quantification of these types of measurement, using seismic inversion techniques in the pre-stack domain, have significantly enhanced the utility of such measurements. Using these techniques, for example, probability of the occurrence of hydrocarbons throughout the seismic data can be estimated, and as a consequence the many pre-stack volumes acquired in a three-dimensional (3D) can be survey, reduced to a single, more interpretable volume. The possibilities of 4D time lapse observation extend the measurements to changes in fluid content (and pressure) with time, and with obvious benefits in establishing the accuracy of dynamic reservoir models and improvements in field development planning. As an illustration, recent results from the Nelson Field (UK North Sea), are presented where we show the method by which probability volumes for oil sands may be calculated. The oil,sand probability volumes for three 3D seismic datasets acquired in 1990, 1997 and 2000 are compared and production effects in these data are demonstrated. [source] Migration velocity analysis for tilted transversely isotropic mediaGEOPHYSICAL PROSPECTING, Issue 1 2009Laxmidhar Behera ABSTRACT Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold-and-thrust belts) and in subsalt exploration. Here, we introduce a methodology for P-wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters , and , and linearly varying symmetry-direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P-wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters , and , in the layer-stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry-axis direction is fixed and VP0 is known, the parameters kz, kx, , and , can be resolved from reflection data. It should be emphasized that estimation of , in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas. [source] Infilling of sparse 3D data for 3D focusing operator estimationGEOPHYSICAL PROSPECTING, Issue 6 2004M.J. Van De Rijzen ABSTRACT Seismic migration can be formulated in terms of two consecutive downward extrapolation steps: refocusing the receivers and refocusing the sources. Applying only the first focusing step with an estimate of the focusing operators results in a common focal point (CFP) gather for each depth point at a reflecting boundary. The CFP gathers, in combination with the estimates of the focusing operators, can be used in an iterative procedure to obtain the correct operators. However, current 3D seismic data acquisition geometries do not contain the dense spatial sampling required for calculation of full 3D CFP gathers. We report on the construction of full 3D CFP gathers using a non-full 3D acquisition geometry. The proposed method uses a reflector-orientated data infill procedure based on the azimuthal redundancy of the reflection data. The results on 3D numerical data in this paper show that full 3D CFP gathers, which are kinematically and dynamically correct for the target event, can be obtained. These gathers can be used for iterative updating of the 3D focusing operators. [source] Use of low frequencies for sub-basalt imagingGEOPHYSICAL PROSPECTING, Issue 3 2003Anton Ziolkowski ABSTRACT Many prospective passive ocean margins are covered by large areas of basalts. These basalts are often extremely heterogeneous and scatter the seismic energy of the conventional seismic reflection system so that it becomes difficult to obtain information on deeper reflectors. Since high frequencies are scattered more than low frequencies, we argue that the acquisition system for sub-basalt targets should be modified to emphasize the low frequencies, using much larger airguns, and towing the source and receivers at about 20 m depth. In the summer of 2001 we obtained seismic reflection data over basalt in the northeast Atlantic using a system modified to enhance the low-frequency energy. These new data show deep reflections that are not visible on lines shot in the same places with a conventional system. [source] Interval velocity and thickness estimate from wide-angle reflection dataGEOPHYSICAL PROSPECTING, Issue 4 2001Roberto De Franco A method to estimate interval velocities and thickness in a horizontal isotropic layered medium from wide-angle reflection traveltime curves is presented. The method is based on a relationship between the squared reflection traveltime differences and the squared offset differences relative to two adjacent reflectors. The envelope of the squared-time versus offset-difference curves, for rays with the same ray parameter, is a straight line, whose slope is the inverse of the square of the interval velocity and whose intercept is the square of the interval time. The method yields velocity and thickness estimates without any knowledge of the overlying stratification. It can be applied to wide-angle reflection data when either information on the upper crust and/or refraction control on the velocity is not available. Application to synthetic and real data shows that the method, used together with other methods, allows us to define a reliable 1D starting model for estimating a depth profile using either ray tracing or another technique. [source] Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection dataISLAND ARC, Issue 3 2007Mikiya Yamashita Abstract The Parece Vela Basin (PVB), which is a currently inactive back-arc basin of the Philippine Sea Plate, was formed by separation between the Izu-Ogasawara Arc (IOA) and the Kyushu-Palau Ridge (KPR). Elucidating the marks of the past back-arc opening and rifting is important for investigation of its crustal structure. To image its fault configurations and crustal deformation, pre-stack depth migration to multichannel seismic reflection was applied and data obtained by the Japan Agency for Marine-Earth Science and Technology and Metal Mining Agency of Japan and Japan National Oil Corporation (Japan Oil, Gas and Metals National Corporation). Salient results for the pre-stack depth-migrated sections are: (i) deep reflectors exist around the eastern margin of KPR and at the western margin of IOA down to 8 km depth; and (ii) normal fault zones distributed at the eastern margin of the KPR (Fault zone A) and the western margin of the IOA (Fault zone B) have a total displacement of greater than 500 m associated with synrift sediments. Additional normal faults (Fault zone C) exist 20 km east of the Fault zone B. They are covered with sediment, which indicates deposition of recent volcanic products in the IOA. According to those results: (i) the fault displacement of more than 500 m with respect to initial rifting was approximately asymmetric at 25 Ma based on PSDM profiles; and (ii) the faults had reactivated after 23 Ma, based on the age of deformed sediments obtained from past ocean drillings. The age of the base sediments corresponds to those of spreading and rotation after rifting in the PVB. Fault zone C is covered with thick and not deformed volcanogenic sediments from the IOA, which suggests that the fault is inactive. [source] THE STRUCTURAL STYLE OF SEDIMENTARY BASINS ON THE SHELVES OF THE LAPTEV SEA AND WESTERN EAST SIBERIAN SEA, SIBERIAN ARCTICJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2005D. Franke A total of 11,700 km of multichannel seismic reflection data were acquired during three recent reconnaissance surveys of the wide, shallow shelves of the Laptev and western East Siberian Seas in the Siberian Arctic Ocean. Three seismic marker horizons were defined and mapped in both shelf areas. Their nature and age were predicted on the basis of regional tectonic and palaeoenvironmental events and corroborated using onshore geology. To the north of the Laptev Sea, the Gakkel Ridge, an active mid-ocean ridge which separates the North American and Eurasian Plates, abruptly meets the steep slope of the continental shelf which is curvilinear in plan view. Extension has affected the Laptev Shelf since at least the Early Tertiary and has resulted in the formation of three major, generally north-south trending rift basins: the Ust'Lena Rift, the Anisin Basin and the New Siberian Basin. The Ust'Lena Rift has a minimum east-west width of 300km at latitude 75°N and a Cenozoic infill up to 6 s (twt) in thickness. Further to the NW of the Laptev Shelf, the downthrown and faulted basement is overlain by a sub-parallel layered sedimentary succession with a thickness of 4 s (twt) that thins towards the west. Although this area was affected by extension as shown by the presence of numerous faults, it is not clear whether this depression on the NW Laptev Shelf is continuous with the Ust'Lena Rift. The Anisin Basin is located in the northern part of the Laptev Shelf and has a Cenozoic sedimentary fill up to 5 s (twt) thick. The deepest part of the basin trends north-south. To the west is a secondary, NW-SE trending depression which is slightly shallower than the main depocentre. The overall structure of the basin is a half-graben with the major bounding fault in the east. The New Siberian Basin is up to 70 km wide and has a minimum NW-SE extent of 300 km. The sedimentary fill is up to 4.5 s (twt) thick. Structurally, the basin is a half-graben with the bounding fault in the east. Our data indicate that the rift basins on the Laptev Shelf are not continuous with those on the East Siberian Shelf. The latter shelf can best be described as an epicontinental platform which has undergone continuous subsidence since the Late Cretaceous. The greatest subsidence occurred in the NE, as manifested by a major depocentre filled with inferred (?)Late Cretaceous to Tertiary sediments up to 5 s (twt) thick. [source] Design and double negative property verification of C band left-handed metamaterialMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2006Fan-Yi Meng Abstract In this article, a left-handed (LH) metamaterial with miniaturized unit cell and broad bandwidth is designed. Its relative bandwidth is 56.4%, and the unit cell electrical size is 0.067 at the central frequency where the LH metamaterial is available. The effective permittivity and effective permeability are extracted from the transmission and reflection data at normal incidence for the LH metamaterial proposed here. The double negative (DNG) property is shown by the simultaneously negative effective permittivity and effective permeability and is confirmed by the equivalent circuit. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 1732,1736, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21763 [source] Structure determination without Fourier inversion.ACTA CRYSTALLOGRAPHICA SECTION A, Issue 6 2009The parameter-space concept for solving crystal structures from reflection amplitudes (without employing or searching for their phases) is described on a theoretically oriented basis. Emphasis is placed on the principles of the method, on selecting one of three types of parameter spaces discussed in this paper, and in particular on the structure model employed (equal-atom point model, however usually reduced to one-dimensional projections) and on the system of `isosurfaces' representing experimental `geometrical structure amplitudes' in an orthonormal parameter space of as many dimensions as unknown atomic coordinates. The symmetry of the parameter space as well as of the imprinted isosurfaces and its effect on solution methods is discussed. For point atoms scattering with different phases or signs (as is possible in the case of X-ray resonant or of neutron scattering) it is demonstrated that the `landscape' of these isosurfaces remains invariant save certain shifts of origin known beforehand (under the condition that all atomic scattering amplitudes have been reduced to 1 thus meeting the requirement of the structure model above). Partly referring to earlier publications on the subject, measures are briefly described which permit circumventing an analytical solution of the system of structure-amplitude equations and lead to either a unique (unequivocal) approximate structure solution (offering rather high spatial resolution) or to all possible solutions permitted by the experimental data used (thus including also all potential `false minima'). A simple connection to Patterson vectors is given, also a first hint on data errors. References are given for practical details of various solution techniques already tested and for reconstruction of three-dimensional structures from their projections by `point tomography'. We would feel foolish if we tried to aim at any kind of `competition' to existing methods. Having mentioned `pros and cons' of our concept, some ideas about potential applications are nevertheless offered which are mainly based on its inherent resolution power though demanding rather few reflection data (use of optimal intensity contrast included) and possibly providing a result proven to be unique. [source] Experimental testing of a random medium optical model of porous silicon for photovoltaic applicationsPROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 1 2001A. A. Abouelsaood We have developed a model for light propagation in porous silicon (PS) based on the theory of wave propagation in random media. The low porosity case is considered, with silicon being the host material assuming randomly distributed spherical voids as scattering particles. The specular and the diffuse part of the light could be determined and treated separately. The model is applied to the case in which porous silicon would be used as a diffuse back reflector in a thin-film crystalline silicon solar cell realized in an ultrathin (1,3,,m) epitaxially grown Si layer on PS. Three,layer structures (epi/PS/Si) have been fabricated by atmospheric pressure chemical vapor deposition (APCVD) of 150,1000 nm epitaxial silicon layers on silicon wafers of which 150,450 nm of the surface has been electrochemically etched. An excellent agreement is found between the experimentally measured reflection data in the 400,1000 nm wavelength range and those calculated using the proposed model. The values of the layer thickness agree, within a reasonable experimental error, with those obtained independently by cross,sectional transmission electron microscopy (XTEM) analysis. This provides an experimental verification of the random,medium approach to porous silicon in the low porosity case. The analysis shows that the epitaxial growth process has led to appreciable porosity decrease of an initially high,porosity layer from about 60% to 20,30%. Copyright © 2001 John Wiley & Sons, Ltd. [source] Accurate charge density of the tripeptide Ala-Pro-Ala with the maximum entropy method (MEM): influence of data resolutionACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2007Andreas Hofmann The accurate electron density of Ala-Pro-Ala is determined by the maximum entropy method (MEM), employing the same reflection data measured at 100,K which was used for a multipole refinement by Kalinowski et al. [(2007), Acta Cryst. Accepted for publication]. Properties of the electron density are compared with the corresponding properties of the static electron density from the multipole model and to the dynamic MEM electron density of trialanine at 20,K. It is thus shown that the increased thermal smearing at 100,K leads to lower electron densities in the bond critical points and atomic charges closer to zero for Ala-Pro-Ala than has been obtained for trialanine at 20,K. The influence of the resolution of the data is investigated by a series of MEM calculations. Atomic charges and atomic volumes are found not to depend on the resolution, but the charge density in the BCPs decreases with decreasing resolution of the dataset. The origin of this dependence is found to lie mostly in the more accurate estimate of the atomic displacement parameters (ADPs) for the higher-resolution datasets. If these effects are taken into account, meaningful information on chemical bonding can be obtained with data at a resolution better than dmin = 0.63,Å. Alternatively, low-resolution X-ray diffraction data can be used in accurate electron-density studies by the MEM, if another source of accurate values of the ADPs is available, e.g. from refinements with multipole parameters from a database of transferable multipole parameters. [source] catena -Poly[[bis(acetonitrile-,N)manganese(II)]-bis(,-trifluoromethanesulfonato-,2O:O,)]ACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2010Martin Lutz The title compound, [Mn(CF3SO3)2(CH3CN)2]n, has an MnII cation on an inversion centre in an octahedral environment. The trifluoromethanesulfonate anions act as bridging ligands and form a one-dimensional coordination polymer in the direction of the a axis. The F atoms of the trifluoromethanesulfonate anions form layers parallel to the ab plane, but despite short intermolecular distances, no stabilizing F...F interactions are detected. The Mn,N and C,C bonds of the acetonitrile ligand are analyzed according to the Hirshfeld rigid-bond test. Renninger effects in the reflection data are considered, explored and discussed. [source] The structural evolution of the Halten Terrace, offshore Mid-Norway: extensional fault growth and strain localisation in a multi-layer brittle,ductile systemBASIN RESEARCH, Issue 2 2010N. Marsh ABSTRACT Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (,rift initiation') followed by a period of more rapid subsidence (,rift climax'). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub-horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well-calibrated three-dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic,Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid-Norway. Permo-Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post-salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden. [source] Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central GreeceBASIN RESEARCH, Issue 6 2009R. E. Bell ABSTRACT The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca. 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1,2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ,3 km) and decreases to the east and west. In detail however, two separated depocentres 20,50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca. 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca. 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry. [source] A subsurface evacuation model for submarine slope failureBASIN RESEARCH, Issue 4 2009Suzanne Bull ABSTRACT Analysis of three-dimensional (3D) seismic reflection data from the Norwegian continental margin provides an insight into an unusual, buried submarine slope failure, which occurred adjacent to the later Holocene-age Storegga Slide. The identified failure, informally named the ,South Vøring Slide' (SVS), occurs in fine-grained hemipelagic and contourite sediments on a slope of 0.5°, and is characterised by a deformed seismic facies unit consisting of closely spaced pyramidal blocks and ridges bound by small normal faults striking perpendicular to the slope. The SVS contrasts with other previously described submarine slope failures in that it cannot be explained by a retrogressive model. The defining characteristic is the high relative volume loss. The area affected by sliding has thinned by some 40%, seen in combination with very modest extension in the translation direction, with line length balancing yielding an extension value of only 4.5%. The volume loss is explained by the mobilisation of an approximately 40 m thick interval at the lower part of the unit and its removal from beneath a thin overburden, which subsequently underwent extensional fragmentation. Evidence for the mobilisation of a thick fine-grained interval in the development of a submarine slope failure from a continental margin setting may have implications for the origins of other large-scale slope failures on the Norwegian margin and other glacially influenced margins worldwide. [source] Late Holocene dispersal and accumulation of terrigenous sediment on Poverty Shelf, New ZealandBASIN RESEARCH, Issue 2 2009A. J. Kettner ABSTRACT We use coupled numerical models (HydroTrend and SedFlux) to investigate the dispersal and accumulation of sediment on Poverty Shelf, North Island, New Zealand, during the past 3 kyr. In this timeframe, we estimate that the Waipaoa River system delivered ,10 Gt of sediment to Poverty Shelf, 5,10% of which was transported to the outer shelf and continental slope. The domain of the two-dimensional model (SedFlux) is representative of a 30 km traverse across the shelf. Comparing the model output with seismic reflection data and a core obtained from the middle shelf shows that, without extensively modifying the governing equations or imposing unrealistic conditions on the model domain, it is possible to replicate the geometry, grain size and accumulation rate of the late Holocene mud deposit. The replicate depositional record responds to naturally and anthropogenically induced vegetation disturbance, as well as to storms forced by long-period climatic events simulated entirely within the model domain. The model output also suggests that long-term fluctuations in the amount and caliber of river sediment discharge, promoted by wholesale changes in the catchment environment, may be translated directly to the shelf depositional record, whereas short-term fluctuations conditioned by event magnitude and frequency are not. Thus on Poverty Shelf, as well as in depocenters on other active continental margins which retain a much smaller proportion of the terrigeneous sediment delivered to them, flood-generated event beds are not commonplace features in the high-resolution sedimentary record. This is because the shelf sedimentary record is influenced more by the energy available to the coastal ocean which helps keep the sediment in suspension and facilitates its dispersal, than by basin hydrometeorology which determines the turbidity and velocity of the river plume. [source] Reflection and penetration depth of millimeter waves in murine skinBIOELECTROMAGNETICS, Issue 5 2008S.I. Alekseev Abstract Millimeter (mm) wave reflectivity was used to determine murine skin permittivity. Reflection was measured in anesthetized Swiss Webster and SKH1-hairless mice in the 37,74 GHz frequency range. Two skin models were tested. Model 1 was a single homogeneous skin layer. Model 2 included four skin layers: (1) the stratum corneum, (2) the viable epidermis plus dermis, (3) fat layer, and (4) muscle which had infinite thickness. We accepted that the permittivity of skin in the mm wave frequency range results from the permittivity of cutaneous free water which is described by the Debye equation. Using Fresnel equations for reflection we determined the skin parameters best fitting to the reflection data and derived the permittivity of skin layers. The permittivity data were further used to calculate the power density and specific absorption rate profiles, and the penetration depth of mm waves in the skin. In both murine models, mm waves penetrate deep enough into tissue to reach muscle. In human skin, mm waves are mostly absorbed within the skin. Therefore, when extrapolating the effects of mm waves found in animals to humans, it is important to take into account the possible involvement of muscle in animal effects. Bioelectromagnetics 29:340,344, 2008. © 2008 Wiley-Liss, Inc. [source] Human skin permittivity determined by millimeter wave reflection measurementsBIOELECTROMAGNETICS, Issue 5 2007S.I. Alekseev Abstract Millimeter wave reflection from the human skin was studied in the frequency range of 37,74 GHz in steps of 1 GHz. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. To fit the reflection data, a homogeneous unilayer and three multilayer skin models were tested. Skin permittivity in the mm-wave frequency range resulted from the permittivity of cutaneous free water which was described by the Debye equation. The permittivity increment found from fitting to the experimental data was used for determination of the complex permittivity and water content of skin layers. Our approach, first tested in pure water and gelatin gels with different water contents, gave good agreement with literature data. The homogeneous skin model fitted the forearm data well. Permittivity of the forearm skin obtained with this model was close to the skin permittivity reported by others. To fit reflection from the palmar skin with a thick SC, a skin model containing at least two layers was required. Multilayer models provided better fitting to both the forearm and palmar skin reflection data. The fitting parameters obtained with different models were consistent with each other. Bioelectromagnetics 28:331,339, 2007. © 2007 Wiley-Liss, Inc. [source] Tectonic Evolution of the Tianhuan Depression and the Western Margin of the Late Triassic OrdosACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009LI Xiangbo Abstract: The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismic profile "layer flattening" and "restoration of balanced section", and other methods, the sedimentary boundary, structure and the evolution history of the Tianhuan depression on the western margin of the Ordos Basin are reestablished. The following results have been obtained. (1) The west boundary of the Late Triassic Ordos Basin was far beyond the scope of the current basin. The basin is connected with the Late Triassic Hexi Corridor Basin, and its western margin did not have tectonic characteristics of a foreland basin. (2) The Tianhuan depression was first formed in the Late Jurassic. At the late stage it was impacted by the late Yanshanian and Himalayan tectonic movement and the depression axis gradually moved eastwards to the present location with a cumulative migration distance of ,30 km. (3) Eastward migration of the depression axis caused adjustment and even destruction of the originally formed oil and gas reservoirs, so that oil and gas remigrated and aggregated, resulting in secondary structural reservoirs formed at high positions on the western flank of the depression. [source] |