Reduced mRNA Expression (reduced + mrna_expression)

Distribution by Scientific Domains


Selected Abstracts


Osteopontin as two-sided mediator of intestinal inflammation

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6 2009
Katja Heilmann
Abstract Osteopontin (OPN) is characterized as a major amplifier of Th1-immune responses. However, its role in intestinal inflammation is currently unknown. We found considerably raised OPN levels in blood of wild-type (WT) mice with dextran sodium sulfate (DSS)-induced colitis. To identify the role of this mediator in intestinal inflammation, we analysed experimental colitis in OPN-deficient (OPN,/,) mice. In the acute phase of colitis these mice showed more extensive colonic ulcerations and mucosal destruction than WT mice, which was abrogated by application of soluble OPN. Within the OPN,/, mice, infiltrating macrophages were not activated and showed impaired phagocytosis. Reduced mRNA expression of interleukin (IL)-1 , and matrix metalloproteinases was found in acute colitis of OPN,/, mice. This was associated with decreased blood levels of IL-22, a Th17 cytokine that may mediate epithelial regeneration. However, OPN,/, mice showed increased serum levels of tumour necrosis factor (TNF)-,, which could be due to systemically present lipopolysaccharide translocated to the gut. In contrast to acute colitis, during chronic DSS-colitis, which is driven by a Th1 response of the lamina propria infiltrates, OPN,/, mice were protected from mucosal inflammation and demonstrated lower serum levels of IL-12 than WT mice. Furthermore, neutralization of OPN in WT mice abrogated colitis. Lastly, we demonstrate that in patients with active Crohn's disease OPN serum concentration correlated significantly with disease activity. Taken together, we postulate a dual function of OPN in intestinal inflammation: During acute inflammation OPN seems to activate innate immunity, reduces tissue damage and initiates mucosal repair whereas during chronic inflammation it promotes the Th1 response and strengthens inflammation. [source]


Sodium lauryl sulphate alters the mRNA expression of lipid-metabolizing enzymes and PPAR signalling in normal human skin in vivo

EXPERIMENTAL DERMATOLOGY, Issue 12 2009
Hans Törmä
Abstract:, Detergents irritate skin and affect skin barrier homeostasis. In this study, healthy skin was exposed to 1% sodium lauryl sulphate (SLS) in water for 24 h. Biopsies were taken 6 h to 8 days post exposure. Lipid patterns were stained in situ and real-time polymerase chain reaction (PCR) was used to examine mRNA expression of enzymes synthesizing barrier lipids, peroxisome proliferator-activated receptors (PPAR) and lipoxygenases. The lipid pattern was disorganized from 6 h to 3 days after SLS exposure. Concomitant changes in mRNA expression included: (i) reduction, followed by induction, of ceramide-generating ,-glucocerebrosidase, (ii) increase on day 1 of two other enzymes for ceramide biosynthesis and (iii) persistent reduction of acetyl-CoA carboxylase-B, a key enzyme in fatty acid synthesis. Surprisingly, the rate-limiting enzyme in cholesterol synthesis, HMG-CoA reductase, was unaltered. Among putative regulators of barrier lipids synthesis, PPAR, and PPAR, exhibited reduced mRNA expression, while PPAR,/, and LXR, were unaltered. Epidermal lipoxygenase-3, which may generate PPAR, agonists, exhibited reduced expression. In conclusion, SLS induces reorganization of lipids in the stratum corneum, which play a role in detergents' destruction of the barrier. The changes in mRNA expression of enzymes involved in synthesizing barrier lipids are probably important for the restoration of the barrier. [source]


Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma

GENES, CHROMOSOMES AND CANCER, Issue 1 2009
Vanessa F. Bonazzi
Tumor suppressor genes (TSGs) are sometimes inactivated by transcriptional silencing through promoter hypermethylation. To identify novel methylated TSGs in melanoma, we carried out global mRNA expression profiling on a panel of 12 melanoma cell lines treated with a combination of 5-Aza-2-deoxycytidine (5AzadC) and an inhibitor of histone deacetylase, Trichostatin A. Reactivation of gene expression after drug treatment was assessed using Illumina whole-genome microarrays. After qRT-PCR confirmation, we followed up 8 genes (AKAP12, ARHGEF16, ARHGAP27, ENC1, PPP1R3C, PPP1R14C, RARRES1, and TP53INP1) by quantitative DNA methylation analysis using mass spectrometry of base-specific cleaved amplification products in panels of melanoma cell lines and fresh tumors. PPP1R3C, ENC1, RARRES1, and TP53INP1, showed reduced mRNA expression in 35,59% of the melanoma cell lines compared to melanocytes and which was correlated with a high proportion of promoter methylation (>40,60%). The same genes also showed extensive promoter methylation in 6,25% of the tumor samples, thus confirming them as novel candidate TSGs in melanoma. © 2008 Wiley-Liss, Inc. [source]


Single-nucleotide polymorphisms and mRNA expression for melatonin synthesis rate-limiting enzyme in recurrent depressive disorder

JOURNAL OF PINEAL RESEARCH, Issue 4 2010
Piotr Ga, ecki
Abstract:, Depressive disorder (DD) is characterised by disturbances in blood melatonin concentration. It is well known that melatonin is involved in the control of circadian rhythms, sleep included. The use of melatonin and its analogues has been found to be effective in depression therapy. Melatonin synthesis is a multistage process, where the last stage is catalysed by acetylserotonin methyltransferase (ASMT), the reported rate-limiting melatonin synthesis enzyme. Taking into account the significance of genetic factors in depression development, the gene for ASMT may become an interesting focus for studies in patients with recurrent DD. The goal of the study was to evaluate two single-nucleotide polymorphisms (SNPs) (rs4446909; rs5989681) of the ASMT gene, as well as mRNA expression for ASMT in recurrent DD-affected patients. We genotyped two polymorphisms in a group of 181 recurrent DD patients and in 149 control subjects. The study was performed using the polymerase chain reaction/restriction fragment length polymorphism method. The distribution of genotypes in both studied SNPs in the ASMT gene differed significantly between DD and healthy subjects. The presence of AA genotype of rs4446909 polymorphism and of GG genotype of rs5989681 polymorphism was associated with lower risk for having recurrent DD. In turn, patients with depression were characterised by reduced mRNA expression for ASMT. In addition, ASMT transcript level in both recurrent DD patients and in healthy subjects depended significantly on genotype distributions in both polymorphisms. In conclusion, our results suggest the ASMT gene as a susceptibility gene for recurrent DD. [source]


Active site inhibited factor VIIa attenuates myocardial ischemia/reperfusion injury in mice

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2009
S. T. B. G. LOUBELE
Summary.,Background:,Inhibition of specific coagulation pathways such as the factor VIIa-tissue factor complex has been shown to attenuate ischemia/reperfusion (I/R) injury, but the cellular mechanisms have not been explored. Objectives:,To determine the cellular mechanisms involved in the working mechanism of active site inhibited factor VIIa (ASIS) in the protection against myocardial I/R injury. Methods:,We investigated the effects of a specific mouse recombinant in a mouse model of myocardial I/R injury. One hour of ischemia was followed by 2, 6 or 24 h of reperfusion. Mouse ASIS or placebo was administered before and after induction of reperfusion. Results:,ASIS administration reduced myocardial I/R injury by more than 40% at three reperfusion times. Multiplex ligation dependent probe amplification (MLPA) analysis showed reduced mRNA expression in the ischemic myocardium of CD14, TLR-4, interleukin-1 (IL-1) receptor-associated kinase (IRAK) and I,B, upon ASIS administration, indicative of inhibition of toll-like receptor-4 (TLR-4) and subsequent nuclear factor-,B (NF-,B) mediated cell signaling. Levels of nuclear activated NF-,B and proteins influenced by the NF-,B pathway including tissue factor (TF) and IL-6 that were increased after I/R, were attenuated upon ASIS administration. After 6 and 24 h of reperfusion, neutrophil infiltration into the area of infarction was decreased upon ASIS administration. There was, however, no evidence of an effect of ASIS on apoptosis (Tunel staining and MLPA analysis). Conclusions:,We conclude that the diminished amount of myocardial I/R injury after ASIS administration is primarily due to attenuated inflammation-related lethal I/R injury, probably mediated through the NF-,B mechanism. [source]


Changes in mRNA expression of ABC and SLC transporters in liver and intestines of the adjuvant-induced arthritis rat

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 1 2009
Satoshi Uno
Abstract In this study, a real-time reverse transcription-polymerase chain reaction was used to determine the effects of adjuvant-induced arthritis (AA) on the amounts of mRNA of 12 types of rat ATP-binding cassette (ABC) and solute carrier (SLC) transporters in the liver and small intestine, 7 (D7) and 21 days (D21) after the injection of adjuvant. There were no significant differences in mRNA levels of ABC and SLC transporters between the livers of AA and control rats on D7, except in the case of Mdr1a. However, levels of Mdr1a, Mrp2 and Oatp SLC transporters were significantly lower in AA than in the control livers on D21. In contrast, the mRNA levels of several ABC and SLC transporters, especially Mrp2, Bcrp, LAT2 and Oatp1a5, were significantly lower in the small intestines of AA rats compared with the controls on D7, though there were no significant differences by D21. The time-dependent alterations in mRNA levels of the pregnane X receptor, but not the constitutive androstane receptor, in the liver and intestine were similar to the changes in mRNA levels of most transporters examined. The present study showed that AA was associated with reduced mRNA expression of several ABC and SLC transporters in the liver and small intestine, but that the time courses of the effects of AA on mRNA expression differed between the liver and small intestine. These results raise the possibility of a functional change of the transporters of liver and intestine in AA rats. Copyright © 2009 John Wiley & Sons, Ltd. [source]