Home About us Contact | |||
Redox-sensitive Transcription Factors (redox-sensitive + transcription_factor)
Selected AbstractsMisregulation of gene expression in the redox-sensitive NF-,b-dependent limb outgrowth pathway by thalidomideDEVELOPMENTAL DYNAMICS, Issue 2 2002Jason M. Hansen Abstract Thalidomide is known to induce oxidative stress, but mechanisms have not been described through which oxidative stress could contribute to thalidomide-induced terata. Oxidative stress modulates intracellular glutathione (GSH) and redox status and can perturb redox-sensitive processes, such as transcription factor activation and/or binding. Nuclear factor-kappa B (NF-,B), a redox-sensitive transcription factor involved in limb outgrowth, may be modulated by thalidomide-induced redox shifts. Thalidomide-resistant Sprague-Dawley rat embryos (gestation day [GD] 13) treated with thalidomide in utero showed no changes in GSH distribution in the limb but thalidomide-sensitive New Zealand White rabbit embryos (GD 12) showed selective GSH depletion in the limb bud progress zone (PZ). NF-,B and regulatory genes that initiate and maintain limb outgrowth and development, such as Twist and Fgf-10, are selectively expressed in the PZ. Green fluorescent protein (GFP) reporter vectors containing NF-,B binding promoter sites were transfected into both rat and rabbit limb bud cells (LBCs). Treatment with thalidomide caused a preferential decrease in GFP expression in rabbit LBCs but not in rat LBCs. N-acetylcysteine and ,-N-t-phenylbutyl nitrone (PBN), a free radical trapping agent, rescued GFP expression in thalidomide-treated cultures compared with cultures that received thalidomide only. In situ hybridization showed a preferential decrease in Twist, Fgf-8, and Fgf-10 expression after thalidomide treatment (400 mg/kg per day) in rabbit embryos. Expression in rat embryos was not affected. Intravenous cotreatment with PBN and thalidomide (gavage) in rabbits restored normal patterns and localization of Twist, Fgf-8, and Fgf-10 expression. These findings show that NF-,B binding is diminished due to selective thalidomide-induced redox changes in the rabbit, resulting in the significant attenuation of expression of genes necessary for limb outgrowth. © 2002 Wiley-Liss, Inc. [source] Oxidative modulation of nuclear factor-,B in human cells expressing mutant fALS-typical superoxide dismutasesJOURNAL OF NEUROCHEMISTRY, Issue 5 2002Arianna Casciati Abstract Previous evidence supports the notion of a redox regulation of protein phosphatase calcineurin that might be relevant for neurodegenerative processes where an imbalance between generation and removal of reactive oxygen species occurs. We have recently observed that calcineurin activity is depressed in human neuroblastoma cells expressing Cu,Zn superoxide dismutase (SOD1) mutant G93A and in brain areas from G93A transgenic mice, and that mutant G93A-SOD1 oxidatively inactivates calcineurin in vitro. We have studied the possibility that, by interfering directly with calcineurin activity, mutant SOD1 can modulate pathways of signal transduction mediated by redox-sensitive transcription factors. In this paper, we report a calcineurin-dependent activation of nuclear factor-,B (NF-,B) induced by the expression of familial amyotrophic lateral sclerosis (fALS)-SOD1s in human neuroblastoma cell lines. Alteration of the phosphorylation state of I,B, (the inhibitor of NF-,B translocation into the nucleus) and induction of cyclooxygenase 2 are consistent with the up-regulation of this transcription factor in this system. All of these modifications might be relevant to signaling pathways involved in the pathogenesis of fALS. [source] Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor ,B activationTHE JOURNAL OF PHYSIOLOGY, Issue 16 2008Susan V. Brooks Chronic exercise improves endurance and skeletal muscle oxidative capacity. Despite the potential importance of reactive oxygen species (ROS) generated during exercise as regulators of these adaptations, the effect of repeated bouts of aerobic exercise on ROS generation by skeletal muscles during contractions has not been examined. Our aim was to establish the impact of repeated treadmill running exercise on muscle ROS generation and activation of redox-sensitive transcription factors. Following 8 weeks of treadmill running, mice displayed an improvement in running speed that was associated with an enhanced ability of gastrocnemius (GTN) muscles to maintain force during a protocol of isometric contractions. In contrast to GTN muscles of cage-sedentary (Sed) mice, muscles from exercised (Exer) mice did not release superoxide or nitric oxide during the isometric contractions. For male mice, basal levels of nuclear factor ,B (NF,B) and activator protein-1 (AP-1) DNA binding were increased by treadmill running, and the contraction-induced activation of NF,B and AP-1 observed in muscles of Sed mice was absent in Exer muscles. Also in contrast to Sed muscles, Exer muscles displayed no reductions in glutathione or protein thiol levels in response to contraction. Our observations of decreases for Exer compared with Sed muscles in contraction-induced (i) ROS generation, (ii) activation of redox-sensitive signalling pathways, and (iii) ROS stress suggest that exercise conditioning enhances the ability of skeletal muscle to readily and rapidly detoxify ROS and/or reduces ROS generation, providing protection from ROS-induced damage and reducing signals that might act to mediate further unnecessary adaptations. [source] Animal performance and stress: responses and tolerance limits at different levels of biological organisationBIOLOGICAL REVIEWS, Issue 2 2009Karin S. Kassahn ABSTRACT Recent advances in molecular biology and the use of DNA microarrays for gene expression profiling are providing new insights into the animal stress response, particularly the effects of stress on gene regulation. However, interpretation of the complex transcriptional changes that occur during stress still poses many challenges because the relationship between changes at the transcriptional level and other levels of biological organisation is not well understood. To confront these challenges, a conceptual model linking physiological and transcriptional responses to stress would be helpful. Here, we provide the basis for one such model by synthesising data from organismal, endocrine, cellular, molecular, and genomic studies. We show using available examples from ectothermic vertebrates that reduced oxygen levels and oxidative stress are common to many stress conditions and that the responses to different types of stress, such as environmental, handling and confinement stress, often converge at the challenge of dealing with oxygen imbalance and oxidative stress. As a result, a common set of stress responses exists that is largely independent of the type of stressor applied. These common responses include the repair of DNA and protein damage, cell cycle arrest or apoptosis, changes in cellular metabolism that reflect the transition from a state of cellular growth to one of cellular repair, the release of stress hormones, changes in mitochondrial densities and properties, changes in oxygen transport capacities and changes in cardio-respiratory function. Changes at the transcriptional level recapitulate these common responses, with many stress-responsive genes functioning in cell cycle control, regulation of transcription, protein turnover, metabolism, and cellular repair. These common transcriptional responses to stress appear coordinated by only a limited number of stress-inducible and redox-sensitive transcription factors and signal transduction pathways, such as the immediate early genes c-fos and c-jun, the transcription factors NF,B and HIF - 1,, and the JNK and p38 kinase signalling pathways. As an example of environmental stress responses, we present temperature response curves at organismal, cellular and molecular levels. Acclimation and physiological adjustments that can shift the threshold temperatures for the onset of these responses are discussed and include, for example, adjustments of the oxygen delivery system, the heat shock response, cellular repair system, and transcriptome. Ultimately, however, an organism's ability to cope with environmental change is largely determined by its ability to maintain aerobic scope and to prevent loss in performance. These systemic constraints can determine an organism's long-term survival well before cellular and molecular functions are disturbed. The conceptual model we propose here discusses some of the crosslinks between responses at different levels of biological organisation and the central role of oxygen balance and oxidative stress in eliciting these responses with the aim to help the interpretation of environmental genomic data in the context of organismal function and performance. [source] |