Redox Imbalance (redox + imbalance)

Distribution by Scientific Domains


Selected Abstracts


Type 1 diabetes: can exercise impair the autoimmune event?

CELL BIOCHEMISTRY AND FUNCTION, Issue 4 2008
The L -arginine/glutamine coupling hypothesis
Abstract Prevention of type 1 diabetes mellitus (T1DM) requires early intervention in the autoimmune process directed against ,-cells of the pancreatic islets of Langerhans, which is believed to result from a disorder of immunoregulation. According to this concept, a T-helper lymphocyte of type 1 (Th1) subset of T-lymphocytes and their cytokine products, the type 1 cytokines [e.g. interleukin 2 (IL-2), interferon gamma (IFN-,) and tumour necrosis factor beta (TNF-,)] prevail over immunoregulatory (anti-inflammatory) Th2 subset and its cytokine products, i.e. type 2 cytokines (e.g. IL-4, IL-6 and IL-10). This allows type 1 cytokines to initiate a cascade of immune/inflammatory processes in the islet (insulitis), culminating in ,-cell destruction. Activation of sympathetic-corticotropin-releasing hormone (CRH) axis by psychological stress induces specifically Th1 cell overactivity that determines enhanced glutamine utilization and consequent poor L -arginine supply for nitric oxide (NO)-assisted insulin secretion. This determines the shift of intraislet glutamate metabolism from the synthesis of glutathione (GSH) to that of L -arginine, leading to a redox imbalance that activates nuclear factor ,B exacerbating inflammation and NO-mediated cytotoxicity. Physical exercise is capable of inducing changes in the pattern of cytokine production and release towards type 2 class and to normalize the glutamine supply to the circulation, which reduces the need for glutamate, whose metabolic fate may be restored in the direction of GSH synthesis and antioxidant defence. Also, the 70-kDa heat shock protein (hsp70), which is immunoregulatory, may modulate exercise-induced anti-inflammation. In this work, we envisage how exercise can intervene in the mechanisms involved in the autoimmune process against ,-cells and how novel therapeutic approaches may be inferred from these observations. Copyright © 2008 John Wiley & Sons, Ltd. [source]


MRP1/GS-X pump ATPase expression: is this the explanation for the cytoprotection of the heart against oxidative stress-induced redox imbalance in comparison to skeletal muscle cells?

CELL BIOCHEMISTRY AND FUNCTION, Issue 1 2007
Maurício S. Krause
Abstract Striated muscle activity is always accompanied by oxidative stress (OxStress): the more intense muscle work and/or its duration, the more a redox imbalance may be attained. In spite of cardiac muscle functioning continuously, it is well known that the heart does not suffer from OxStress-induced damage over a broad physiological range. Although the expression of antioxidant enzymes may be of importance in defending heart muscle against OxStress, a series of combined antioxidant therapeutic approaches have proved to be mostly ineffective in avoiding cellular injury. Hence, additional mechanisms may be involved in heart cytoprotection other than antioxidant enzyme activities. The strong cardiotoxic effect of doxorubicin-induced cancer chemotherapy shed light on the possible role for multidrug resistance-associated proteins (MRP) in this context. Muscle activity-induced ,physiological' OxStress enhances the production of glutathione disulfide (GSSG) thus increasing the ratio of GSSG to glutathione (GSH) content inside the cells, which, in turn, leads to redox imbalance. Since MRP1 gene product (a GS-X pump ATPase) is a physiological GSSG transporter, adult Wistar rats were tested for MRP1 expression and activity in the heart and skeletal muscle (gastrocnemius), in as much as the latter is known to be extremely sensitive to muscle activity-induced OxS. MRP1 expression was completely absent in skeletal muscle. In contrast, the heart showed an exercise training-dependent induction of MRP1 protein expression which was further augmented (2.4-fold) as trained rats were challenged with a session of acute exercise. On the other hand, inducible expression of the 70-kDa heat shock protein (HSP70), a universal marker of cellular stress, was completely absent in the heart of sedentary and acutely exercised rats, whereas skeletal muscle showed a conspicuous exercise-dependent HSP70 expression, which decreased by 45% with exercise training. This effect was paralleled by a 58% decrease in GSH content in skeletal muscle which was even higher (an 80%-fall) after training thus leading to a marked redox imbalance ([GSSG]/[GSH] raised up to 38-fold). In the heart, GSH contents and [GSSG]/[GSH] ratio remained virtually unchanged even after exercise challenges, while GS-X pump activity was found to be 20% higher in the heart related to skeletal muscle. These findings suggest that an intrinsic higher capacity to express the MRP1/GS-X pump may dictate the redox status in the heart muscle thus protecting myocardium by preventing GSSG accumulation in cardiomyocytes as compared to skeletal muscle fibres. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Lipid peroxide-induced redox imbalance differentially mediates CaCo-2 cell proliferation and growth arrest

CELL PROLIFERATION, Issue 4 2002
Yudai Gotoh
Dietary oxidants like lipid hydroperoxides (LOOH) can perturb cellular glutathione/glutathione disulphide (GSH/GSSG) status and disrupt mucosal turnover. This study examines the effect of LOOH on GSH/GSSG balance and phase transitions in the human colon cancer CaCo-2 cell. LOOH at 1 or 5 µm were noncytotoxic, but disrupted cellular GSH/GSSG and stimulated proliferative activity at 6 h that paralleled increases in ornithine decarboxylase activity, thymidine incorporation, expression of cyclin D1/cyclin-dependent kinase 4, phosphorylation of retinoblastoma protein, and cell progression from G0/G1 to S. At 24 h, LOOH-induced sustained GSH/GSSG imbalance mediated growth arrest at G0/G1 that correlated with suppression of proliferative activity and enhanced oxidative DNA damage. LOOH-induced cell transitions were effectively blocked by N-acetylcysteine. Collectively, the study shows that subtoxic LOOH levels induce CaCo-2 GSH/GSSG imbalance that elicits time-dependent cell proliferation followed by growth arrest. These results provide insights into the mechanism of hydroperoxide-induced disruption of mucosal turnover with implications for understanding oxidant-mediated genesis of gut pathology. [source]