Reconstruction Scheme (reconstruction + scheme)

Distribution by Scientific Domains


Selected Abstracts


Enhanced process monitoring for wastewater treatment systems

ENVIRONMETRICS, Issue 6 2008
Chang Kyoo Yoo
Abstract Wastewater treatment plants (WWTPs) remain notorious for poor data quality and sensor reliability problems due to the hostile environment, missing data problems and more. Many sensors in WWTP are prone to malfunctions in harsh environments. If a WWTP contains any redundancy between sensors, monitoring methods with sensor reconstruction such as the proposed one can yield a better monitoring efficiency than without a reconstruction scheme. An enhanced robust process monitoring method combined with a sensor reconstruction scheme to tackle the sensor failure problems is proposed for biological wastewater treatment systems. The proposed method is applied to a single reactor for high activity ammonia removal over nitrite (SHARON) process. It shows robust monitoring performance in the presence of sensor faults and produces few false alarms. Moreover, it enables us to keep the monitoring system running in the case of sensor failures. This guaranteed continuity of the monitoring scheme is a necessary development in view of real-time applications in full-scale WWTPs. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Minimum weighted norm wavefield reconstruction for AVA imaging

GEOPHYSICAL PROSPECTING, Issue 6 2005
Mauricio D. Sacchi
ABSTRACT Seismic wavefield reconstruction is posed as an inversion problem where, from inadequate and incomplete data, we attempt to recover the data we would have acquired with a denser distribution of sources and receivers. A minimum weighted norm interpolation method is proposed to interpolate prestack volumes before wave-equation amplitude versus angle imaging. Synthetic and real data were used to investigate the effectiveness of our wavefield reconstruction scheme when preconditioning seismic data for wave-equation amplitude versus angle imaging. [source]


Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2010
Hae Sung Lee
Abstract This paper presents a new class of displacement reconstruction scheme using only acceleration measured from a structure. For a given set of acceleration data, the reconstruction problem is formulated as a boundary value problem in which the acceleration is approximated by the second-order central finite difference of displacement. The displacement is reconstructed by minimizing the least-squared errors between measured and approximated acceleration within a finite time interval. An overlapping time window is introduced to improve the accuracy of the reconstructed displacement. The displacement reconstruction problem becomes ill-posed because the boundary conditions at both ends of each time window are not known a priori. Furthermore, random noise in measured acceleration causes physically inadmissible errors in the reconstructed displacement. A Tikhonov regularization scheme is adopted to alleviate the ill-posedness. It is shown that the proposed method is equivalent to an FIR filter designed in the time domain. The fundamental characteristics of the proposed method are presented in the frequency domain using the transfer function and the accuracy function. The validity of the proposed method is demonstrated by a numerical example, a laboratory experiment and a field test. Copyright © 2009 John Wiley & Sons, Ltd. [source]


An eigenvector-based linear reconstruction scheme for the shallow-water equations on two-dimensional unstructured meshes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2007
Sandra Soares Frazão
Abstract This paper presents a new approach to MUSCL reconstruction for solving the shallow-water equations on two-dimensional unstructured meshes. The approach takes advantage of the particular structure of the shallow-water equations. Indeed, their hyperbolic nature allows the flow variables to be expressed as a linear combination of the eigenvectors of the system. The particularity of the shallow-water equations is that the coefficients of this combination only depend upon the water depth. Reconstructing only the water depth with second-order accuracy and using only a first-order reconstruction for the flow velocity proves to be as accurate as the classical MUSCL approach. The method also appears to be more robust in cases with very strong depth gradients such as the propagation of a wave on a dry bed. Since only one reconstruction is needed (against three reconstructions in the MUSCL approach) the EVR method is shown to be 1.4,5 times as fast as the classical MUSCL scheme, depending on the computational application. Copyright © 2006 John Wiley & Sons, Ltd. [source]


New results in robust actuator fault reconstruction for linear uncertain systems using sliding mode observers

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 14 2007
Kok Yew Ng
Abstract This paper presents a robust actuator fault reconstruction scheme for linear uncertain systems using sliding mode observers. In existing work, fault reconstruction via sliding mode observers is limited to either linear certain systems subject to unknown inputs, relative degree one systems or a specific class of relative degree two systems. This paper presents a new method that is applicable to a wider class of systems with relative degree higher than one, and can also be used for systems with more unknown inputs than outputs. The method uses two sliding mode observers in cascade. Signals from the first observer are processed and used to drive the second observer. Overall, this results in actuator fault reconstruction being feasible for a wider class of systems than using existing methods. A simulation example verifies the claims made in this paper. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Phase-sensitive cardiac tagging,REALTAG

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2007
J. Andrew Derbyshire
Abstract Fully inverting spins, instead of merely saturating them, provides superior contrast for tagging procedures. The resulting improvement in tag contrast-to-noise ratio (CNR) yields higher-precision tag detection. Also, thinner slices and hence reduced tag separations can be employed, providing displacement and strain measurements with better spatial resolution. Alternatively, the improved tag contrast can be used to obtain cine images covering a greater portion of the cardiac cycle. The use of standard magnitude reconstruction for images of these inversion tags causes rectification of the negative-valued signals from the tags, confounding the image interpretation. Therefore, a phase-sensitive reconstruction scheme of the inverted tags must be employed. Here we demonstrate the implementation of inverted tags with phase-sensitive reconstruction in a ramped-flip-angle, steady-state free precession (SSFP) sequence. Magn Reson Med 58:206,210, 2007. © 2007 Wiley-Liss, Inc. [source]


Comparison of three second-order accurate reconstruction schemes for 2D Euler and Navier,Stokes compressible flows on unstructured grids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 5 2001
N. P. C. Marques
Abstract This paper reports an intercomparison of three second-order accurate reconstruction schemes to predict 2D steady-state compressible Euler and Navier,Stokes flows on unstructured meshes. The schemes comprise one monotone slope limiter (Barth and Jespersen, A1AA Paper 89-0366, 1989) and two approximately monotone methods: the slope limiter due to Venkatakrishnan and a data-dependent weighting least-squares procedure (Gooch, Journal of Computational Physics, 1997; 133:6,17). In addition to the 1D scalar wave problem, comparisons were performed under two inviscid test cases: a supersonic 10° ramp and a supersonic bump; and two viscous laminar compressible flow cases: the Blasius boundary layer and a double-throated nozzle. The data-dependent oscillatory behaviour is found to be dependent on a user-supplied constant. The three schemes are compared in terms of accuracy and computational efficiency. The results show that the data-dependent procedure always returns a numerical steady-state solution, more accurate than the ones returned by the slope limiters. Its use for Navier,Stokes flow calculations is recommended. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Spectral analysis of flux vector splitting finite volume methods

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2001
Tapan K. Sengupta
Abstract New results are presented here for finite volume (FV) methods that use flux vector splitting (FVS) along with higher-order reconstruction schemes. Apart from spectral accuracy of the resultant methods, the numerical stability is investigated which restricts the allowable time step or the Courant,Friedrich,Lewy (CFL) number. Also the dispersion relation preservation (DRP) property of various spatial and temporal discretization schemes is investigated. The DRP property simultaneously fixes space and time steps. This aspect of numerical schemes is important for simulation of high-Reynolds number flows, compressible flows with shock(s) and computational aero-acoustics. It is shown here that for direct numerical simulation applications, the DRP property is more restrictive than stability criteria. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Deterministic and statistical methods for reconstructing multidimensional NMR spectra,

MAGNETIC RESONANCE IN CHEMISTRY, Issue 3 2006
Ji Won Yoon
Abstract Reconstruction of an image from a set of projections is a well-established science, successfully exploited in X-ray tomography and magnetic resonance imaging. This principle has been adapted to generate multidimensional NMR spectra, with the key difference that, instead of continuous density functions, high-resolution NMR spectra comprise discrete features, relatively sparsely distributed in space. For this reason, a reliable reconstruction can be made from a small number of projections. This speeds the measurements by orders of magnitude compared to the traditional methodology, which explores all evolution space on a Cartesian grid, one step at a time. Speed is of crucial importance for structural investigations of biomolecules such as proteins and for the investigation of time-dependent phenomena. Whereas the recording of a suitable set of projections is a straightforward process, the reconstruction stage can be more problematic. Several practical reconstruction schemes are explored. The deterministic methods,additive back-projection and the lowest-value algorithm,derive the multidimensional spectrum directly from the experimental projections. The statistical search methods include iterative least-squares fitting, maximum entropy, and model-fitting schemes based on Bayesian analysis, particularly the reversible-jump Markov chain Monte Carlo procedure. These competing reconstruction schemes are tested on a set of six projections derived from the three-dimensional 700-MHz HNCO spectrum of a 187-residue protein (HasA) and compared in terms of reliability, absence of artifacts, sensitivity to noise, and speed of computation. Copyright © 2006 John Wiley & Sons, Ltd. [source]