Recessive Juvenile Parkinsonism (recessive + juvenile_parkinsonism)

Distribution by Scientific Domains

Kinds of Recessive Juvenile Parkinsonism

  • autosomal recessive juvenile parkinsonism


  • Selected Abstracts


    Identification and characterization of a novel endogenous murine parkin mutation

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
    Chenere P. Ramsey
    J. Neurochem. (2010) 113, 402,417. Abstract Various mutations in the PARK2 gene which encodes the protein, parkin, are causal of a disease entity-termed autosomal recessive juvenile parkinsonism. Parkin can function as an E3 ubiquitin-protein ligase, mediating the ubiquitination of specific targeted proteins and resulting in proteasomal degradation. Parkin is thought to lead to parkinsonism as a consequence of a loss in its function. In this study, immunoblot analyses of brain extracts from Balb/c, C57BL/6, C3H, and 129S mouse strains demonstrated significant variations in immunoreactivity with anti-parkin monoclonal antibodies (PRK8, PRK28, and PRK109). This resulted partly from differences in the steady-state levels of parkin protein across mouse strains. There was also a complete loss of immunoreactivity for PRK8 and PRK28 antibodies in C3H mice due to was because of a homologous nucleotide mutation resulting in an E398Q amino acid substitution. In cultured cells, parkin harboring this mutation had a greater tendency to aggregate, exhibited reduced interaction with the E2 ubiquitin-conjugating enzymes, UbcH7 and UbcH8, and demonstrated loss-of-function in promoting the proteosomal degradation of a specific putative substrate, synphilin-1. In situ, C3H mice displayed age-dependent increased levels of brain cortical synphilin-1 compared with C57BL/6, suggesting that E398Q parkin in these mice is functionally impaired and that C3H mice may be a suitable model of parkin loss-of-function similar to patients with missense mutations. [source]


    A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2006
    Tomohiro Omura
    Abstract It has been proposed that in autosomal recessive juvenile parkinsonism (AR-JP), a ubiquitin ligase (E3) Parkin, which is involved in endoplasmic reticulum-associated degradation (ERAD), lacks E3 activity. The resulting accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), a substrate of Parkin, leads to endoplasmic reticulum stress, causing neuronal death. We previously reported that human E3 HRD1 in the endoplasmic reticulum protects against endoplasmic reticulum stress-induced apoptosis. This study shows that HRD1 was expressed in substantia nigra pars compacta (SNC) dopaminergic neurons and interacted with Pael-R through the HRD1 proline-rich region, promoting the ubiquitylation and degradation of Pael-R. Furthermore, the disruption of endogenous HRD1 by small interfering RNA (siRNA) induced Pael-R accumulation and caspase-3 activation. We also found that ATF6 overexpression, which induced HRD1, accelerated and caused Pael-R degradation; the suppression of HRD1 expression by siRNA partially prevents this degradation. These results suggest that in addition to Parkin, HRD1 is also involved in the degradation of Pael-R. [source]


    Diagnostic considerations in juvenile parkinsonism

    MOVEMENT DISORDERS, Issue 2 2004
    Dominic C. Paviour MRCP
    Abstract Juvenile parkinsonism (JP) describes patients in whom the clinical features of parkinsonism manifest before 21 years of age. Many reported cases that had a good response to levodopa have proved to have autosomal recessive juvenile parkinsonism (AR-JP) due to mutations in the parkin gene. With the exception of parkin mutations and dopa-responsive dystonia, most causes are associated with the presence of additional neurological signs, resulting from additional lesions outside of the basal ganglia. Lewy body pathology has only been reported in one case, suggesting that a juvenile form of idiopathic Parkinson's disease may be extremely rare. © 2003 Movement Disorder Society [source]


    Involvement of spinal motor neurons in parkin-positive autosomal recessive juvenile parkinsonism

    NEUROPATHOLOGY, Issue 1 2008
    Shoichi Sasaki
    We intensively examined the spinal cord of an autosomal recessive juvenile parkinsonism (ARJP) female patient with a homozygous exon 3 deletion in the parkin gene, anticipating a possible involvement of anterior horn neurons. Although the clinical features of the patient were consistent with parkinsonism as a result of parkin mutation, her tendon reflex was abolished in the lower limbs. This feature was in contrast with hyperreflexia, usually found in previous reports of ARJP. Histologically, on the level of the cervical, thoracic, and sacral spinal cord, anterior horn neurons were well preserved and normal. However, the lumbar spinal cord exhibited many swellings of proximal axons (spheroids) and degenerative changes in the somata of the large anterior horn neurons such as central chromatolysis, cystatin C-negative small eosinophilic inclusions, and eosinophilic Lewy body-like inclusions. Ultrastructurally, accumulations of neurofilaments and abnormal structures, such as inclusion bodies similar to skein-like inclusions and disorganized rough endoplasmic reticulum, were observed in the somata and neuronal processes. Lewy body-like inclusions in this study were positively immunostained for both ,-synuclein and ubiquitin that closely resemble Lewy bodies, but are different from Lewy body-like inclusions negatively immunostained for ,-synuclein in amyotrophic lateral sclerosis. These findings suggest that eosinophilic inclusions that closely resemble Lewy bodies may be formed in the spinal motor neurons of ARJP patients with parkin mutations and the motor neurons of these patients may be vulnerable to neurodegeneration. [source]