Receptor Regulation (receptor + regulation)

Distribution by Scientific Domains


Selected Abstracts


Lipopolysaccharide-Induced Oestrogen Receptor Regulation in the Paraventricular Hypothalamic Nucleus of Lewis and Fischer Rats

JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2002
L. Tonelli
Abstract Oestrogen receptor (ER) regulation of gene transcription in neurosecretory and pituitary cells has been proposed as an important mechanism for increased hypothalamic-pituitary-adrenal (HPA) axis responses in females of several mammalian species, including humans. Inbred female Fischer (F344/N) and Lewis (LEW/N) rats have similar oestrogen levels, although Fischer rats exhibit hyper- and Lewis rats hypo-HPA axis responses. The blunted HPA axis response of Lewis rats has been associated with their blunted hypothalamic corticotropin releasing hormone (CRH) expression. To determine if the female CRH expression deficiency in Lewis rats is associated with defective ER expression and regulation, hypothalamic paraventricular nucleus (PVN) transcript levels of CRH and ER were determined under basal conditions and after immune challenge. Microdissected PVN were obtained from control and lipopolysaccharide (LPS) treated Lewis and Fischer rats and CRH, ER, and , mRNA levels were determined by semiquantitative reverse-transcriptase-polymerase chain reaction. In addition, ER, and , protein levels were determined by semiquantitative Western blots. ER, and , mRNA and protein levels in the PVN of control Fischer rats were significantly higher than in control Lewis rats. ER, and , mRNA and protein levels in Fischer rats were reduced by LPS administration at the time of maximal CRH mRNA levels but did not change in Lewis rats, an effect independent of oestrogen levels. These data indicate that defective neuroendocrine HPA axis responses are associated with defective ER expression and regulation in Lewis PVN despite oestrogen concentrations. [source]


Pharmacological characterization of the rat brain P2Y1 receptor expressed in HEK293 cells: Ca2+ signaling and receptor regulation

DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001
Christian Vöhringer
Abstract The increasing number of ATP- and UTP-sensitive membrane receptors identified by cloning represent either ligand-activated ion channels (P2X) or G-protein-coupled receptors (P2Y). Adenosine, ATP, and UTP have potential application in the management of pain, cancer, and some cardiovascular and pulmonary diseases and are also involved in inflammatory processes in the brain. Therefore, P2Y receptors seem to be promising therapeutic targets. Multiple P2Y receptor subtypes, classified pharmacologically, are mainly linked to activation of phospholipase C (PLC). The present study further characterizes the rat brain P2Y1 wild-type receptor (rP2Y1 -wt) and the eGFP-tagged receptor (rP2Y1 -eGFP) stably expressed in HEK293 cells, thus shedding light on receptor regulation. Both receptors were analyzed by measuring Ca2+ responses in single cells. The rP2Y1 -eGFP receptor was coupled to Ca2+ release like the rP2Y1 -wt receptor. Experiments using the PLC inhibitor U73122 confirm the functional activation of PLC, through rP2Y1 -eGFP activation. The P2Y1 -selective agonists 2-MeSADP and 2-MeSATP were most potent at the heterologously expressed receptors. We found a ligand selectivity typical for P2Y1 receptors (2-MeSADP = 2-MeSATP > ADP > ATP,S, ATP >> UTP). Fluorescence microscopy and Ca2+ measurements confirm that the rP2Y1-eGFP receptor during homologous desensitization is subjected to processes leading to agonist-induced internalization. The kinetics of receptor resensitization were also examined. Therefore, rP2Y1 -eGFP expressing cells are suitable to determine the physiological P2Y1 receptor signaling pathway and can be a helpful tool to identify drugs acting at P2Y1 receptors as possible therapeutic targets. Drug Dev. Res. 53:172,179, 2001. © 2001 Wiley-Liss, Inc. [source]


Post-translational and cell type-specific regulation of CXCR4 expression by cytokines

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2003
Hilke Brühl
Abstract We have investigated the regulation and function of the chemokine receptor CXCR4 on neutrophils. CXCR4 is hardly detectable on neutrophils in the peripheral blood. However, overnight culture strongly up-regulates CXCR4 expression on the cell surface. The functional activity of CXCR4 on cultured neutrophils was confirmed by stromal cell-derived factor (SDF)-induced migration and up-regulation of the integrins CD11b and CD11c. CXCR4 surface expression on neutrophils but not on lymphocytes and monocytes is rapidly down-regulated after stimulation with TNF-, and IFN-,, resulting in significantly decreased SDF-induced functional responses of neutrophils. In contrast to surface expression, CXCR4 mRNA expression was several-fold increased in cytokine-stimulated neutrophils, suggesting a post-translational regulation. By confocal microscopy we demonstrate that CXCR4 is internalized after stimulation with TNF-, and IFN-,. The down-modulation of CXCR4 surface expression in response to TNF-, and IFN-, was fully reversible after cytokine removal. Further, CXCR4 down-modulation could be completely blocked by hypertonic sucrose and significantly reduced by chlorpromazine indicating the involvement of clathrin-coated pits. Internalization of CXCR4 by cytokines in a cell type-specific manner is a novel and functionally important mechanism of chemokine receptor regulation. [source]


Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000
Ingrid Strömberg
Abstract It has been shown that striatal adenosine A2A receptors can antagonistically interact with dopamine D2 receptors at the membrane level leading to a decrease in the affinity and efficacy of D2 receptors. Extracellular recordings and rotational behaviour were employed to obtain a correlate to these findings in an animal model of Parkinson's disease (PD). The recordings were performed in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced catecholamine depletion. While recording in the dopamine-depleted striatum, local applications of the dopamine D2 agonist quinpirole reduced neuronal activity. However, when the adenosine A2A antagonist MSX-3 was applied simultaneously with quinpirole, the inhibition of neuronal firing seen after quinpirole alone was significantly potentiated (P < 0.001, n = 11). In contrast, local application of CGS 21680 attenuated the effect of quinpirole. The doses of MSX-3 and CGS 21680 used to achieve the modulation of quinpirole action had no effect per se on striatal neuronal firing. Furthermore, rotational behaviour revealed that MSX-3 dose-dependently increased the number of turns when administrated together with a threshold dose of quinpirole while no enhancement was achieved when MSX-3 was combined with SKF 38393. MSX-3 alone did not induce rotational behaviour. In conclusion, this study shows that low ineffective doses of MSX-3 enhance the effect of quinpirole on striatal firing rate, while the A2A agonist exerts the opposite action. This mechanism gives a therapeutic potential to A2A antagonists in the treatment of PD by enhancing D2 receptor function. [source]


Regional differences in hippocampal PKA immunoreactivity after training and reversal training in a spatial Y-maze task

HIPPOCAMPUS, Issue 5 2007
Robbert Havekes
Abstract It is suggested that the hippocampus functions as a comparator by making a comparison between the internal representation and actual sensory information from the environment (for instance, comparing a previously learned location of a food reward with an actual novel location of a food reward in a Y-maze). However, it remains unclear to what extent the various hippocampal regions contribute to this comparator function. One of the proteins known to be crucially involved in the formation of hippocampus-dependent long-term memory is the adenosine 3,,5, cyclic monophosphate dependent protein kinase (PKA). Here, we examined region-specific changes in immunoreactivity (ir) of the regulatory II,,, subunits of PKA (PKA RII,,,-ir) in the hippocampus during various stages of spatial learning in a Y-maze reference task. Thereafter, we compared changes in hippocampal PKA RII,,,-ir induced by training and reversal training in which the food reward was relocated to the previously unrewarded arm. We show that: (1) There was a clear correlation between behavioral performance and elevated PKA RII,,,-ir during the acquisition phase of both training and reversal training in area CA3 and dentate gyrus (DG), (2) PKA RII,,,-ir was similarly enhanced in area CA1 during the acquisition phase of reversal training, but did not correlate with behavioral performance, (3) PKA RII,,,-ir did not change during training or reversal training in the subiculum (SUB), (4) No changes in PKA RII,,, protein levels were found using Western blotting, and (5) AMPA receptor phosphorylation at serine 845 (S845p; the PKA site on the glutamate receptor 1 subunit (GluR1)), was enhanced selectively during the acquisition phase of reversal training. These findings reveal that training and reversal training induce region-specific changes in hippocampal PKA RII,,,-ir and suggest a differential involvement of hippocampal subregions in match-mismatch detection in case of Y-maze reference learning. Alterations in AMPA receptor regulation at the S845 site seems specifically related to the novelty detector function of the hippocampus important for match-mismatch detection. © 2007 Wiley-Liss, Inc. [source]


Mechanisms of cardioprotection by lysophospholipids

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Joel S. Karliner
Abstract The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphosphatidic acid (LPA) reduce mortality in hypoxic cardiac myocytes. S1P is also cardioprotective in both mouse and rat models of cardiac ischemia/reperfusion (I/R) injury. Although these results are consistent with prior work in other cell types, it is not known what signaling events are critical to cardioprotection, particularly with respect to ceramide and the preservation of mitochondrial function, which is essential for cardiac cell survival. Neither receptor regulation nor signaling has been studied during I/R in the heart with or without the application of S1P or LPA. The role of sphingosine kinase in I/R and in ischemic preconditioning (IPC) has not been defined, nor has the fate or function of S1P generated by this enzyme, particularly during preconditioning or I/R, been elucidated. Whether S1P infused systemically in animal models of myocardial infarction in which survival is an end-point will be hemodynamically tolerated has not been determined. If not, the substitution of agents such as the monosialoganglioside GM-1, which activates sphingosine kinase, or the development of alternative ligands for S1P receptors will be necessary. © 2004 Wiley-Liss, Inc. [source]


Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells

JOURNAL OF NEUROCHEMISTRY, Issue 5 2005
Lyda M. Rincón Castro
Abstract Valproic acid (VPA) is a potent anti-epileptic and effective mood stabilizer. It is known that VPA enhances central GABAergic activity and activates the mitogen-activated protein kinase,extracellular signal-regulated kinase (MAPK,ERK) pathway. It can also inhibit various isoforms of the enzyme, histone deacetylase (HDAC), which is associated with modulation of gene transcription. Recent in vivo studies indicate a neuroprotective role for VPA, which has been found to up-regulate the expression of brain-derived neurotrophic factor (BDNF) in the rat brain. Given the interaction between the pineal hormone, melatonin, and GABAergic systems in the central nervous system, the effects of VPA on the expression of the mammalian melatonin receptor subtypes, MT1 and MT2, were examined in rat C6 glioma cells. The effects of VPA on the expression of glial cell line-derived neurotrophic factor (GDNF) and BDNF were also examined. RT-PCR studies revealed a significant induction of melatonin MT1 receptor mRNA in C6 cells following treatment with 3 or 5 mm VPA for 24 h or 5 mm VPA for 48 h. Western analysis and immunocytochemical detection confirmed that the VPA-induced increase in MT1 mRNA results in up-regulation of MT1 protein expression. Blockade of the MAPK,ERK pathway by PD98059 enhanced the effect of VPA on MT1 expression, suggesting a negative role for this pathway in MT1 receptor regulation. In addition, significant increases in BDNF, GDNF and HDAC mRNA expression were observed after treatment with VPA for 24 or 48 h. Taken together, the present findings suggest that the neuroprotective properties of VPA involve modulation of neurotrophic factors and receptors for melatonin, which is also thought to play a role in neuroprotection. Moreover, the foregoing suggests that combinations of VPA and melatonin could provide novel therapeutic strategies in neurological and psychiatric disorders. [source]


NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2009
Gonzalo Bustos
Abstract The clinical symptoms of Parkinson's disease (PD) appear late and only when the degenerative process at the level of the nigrostriatal dopamine (DA) pathway is quite advanced. An increase in brain-derived neurotrophic factor (BDNF) expression may be one of the molecular signals associated to compensatory and plastic responses occurring in basal ganglia during presymptomatic PD. In the present study, we used in vivo microdialysis, semiquantitative reverse transcriptase,polymerase chain reaction, and immunohistochemistry to study N-methyl- D -aspartic acid (NMDA) receptor regulation of BDNF expression in substantia nigra (SN) of adult rats after partial lesioning of the nigrostriatal DA pathway with unilateral striatal injections of 6-hydroxydopamine (6-OHDA). A time-dependent partial decrease of striatal DA tissue content as well as parallel and gradual increases in extracellular glutamate and aspartate levels in SN were found 1 to 7 days after unilateral 6-OHDA intrastriatal injection. Instead, the number of tyrosine hydroxylase,immunoreactive (IR) cells in the ipsilateral SN pars compacta remained statistically unchanged after neurotoxin injection. Intrastriatal administration of 6-OHDA also produced an early and transient augmentation of pan-BDNF, exon II,BDNF, and exon III,BDNF transcripts in the ipsilateral SN. The pan-BDNF and exon II,BDNF transcript increases were completely abolished by the prior systemic administration of MK-801, a selective antagonist of NMDA receptors. MK-801 also blocked the increase in BDNF-IR cells in SN observed 7 days after unilateral 6-OHDA intrastriatal injections. Our findings suggest that a coupling between glutamate release, NMDA receptor activation, and BDNF expression may exist in the adult SN and represent an important signal in this midbrain nucleus triggered in response to partial DA loss occurring in striatal nerve endings during presymptomatic PD. © 2009 Wiley-Liss, Inc. [source]


Programmed autologous cleavage of platelet receptors

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2007
M. C. BERNDT
Summary., Platelet adhesion receptors play a critical role in vascular pathophysiology, and control platelet adhesion, activation and aggregation in hemostasis, thrombotic disease and atherogenesis. One of the key emerging mechanisms for regulating platelet function is the programmed autologous cleavage of platelet receptors. Induced by ligand binding or platelet activation, proteolysis at extracellular (ectodomain shedding) or intracellular (cytoplasmic domain deactivation) sites down-regulates the adheso-signaling function of receptors, thereby controlling not only platelet responsiveness, but in the case of ectodomain shedding, liberating soluble ectodomain fragments into plasma where they constitute potential modulators or markers. This review discusses the underlying mechanisms for dual proteolytic pathways of receptor regulation, and the impact of these pathways on thrombus formation and stability in vivo. [source]


Effect of inhibitors of mitogen-activated protein kinase kinase on ,1B -adrenoceptor phosphorylation

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 1-2 2009
R. Alcántara-Hernández
Summary 1,Mitogen-activated protein kinases mediate hormone/neurotransmitter action on proliferation and differentiation and participate in receptor regulation. The effect of inhibitors of mitogen-activated kinase kinase (MEK) on ,1B -adrenoceptor phosphorylation state and function was studied using different cell lines. It was observed that at nanomolar concentrations the MEK inhibitors, PD98059 (2,-amino-3,-methoxyflavone) and UO126 [1,4-(diamino-2,3-dicyano/1,4-bis-(2-aminophenylthio)-butadiene], increased ,1B -adrenoceptor phosphorylation and diminished the functional response of this receptor to noradrenaline. These agents did not alter the action of lysophosphatidic acid. 2,Staurosporine (IC50 , 0.8 nm) (a general protein kinase inhibitor) and bis-indolyl-maleimide I (IC50 , 200 nm) (a selective protein kinase C inhibitor) inhibited PD98059-induced ,1B -adrenoceptor phosphorylation. In contrast, neither wortmannin (phosphoinositide 3-kinase inhibitor) nor genistein (protein tyrosine kinase inhibitor) had any effect. The data suggest the possibility that MEK might exert control on the activity of the enzymes that regulate receptor phosphorylation, such as G-protein-coupled receptor kinases, protein kinase C or serine/threonine protein phosphatases. 3,Coimmunoprecipitation studies showed a constant association of total extracellular signal-regulated kinase 2 (ERK2) with ,1B -adrenoceptors. Association of phospho-ERK 1/2 to ,1B -adrenoceptors increased not only in response to agonist but also in response to agents that increase ,1B -adrenoceptor and ERK1/2 phosphorylation [such as endothelin-1, phorbol 12-myristate-13-acetate (PMA) and epidermal growth factor (EGF)]; not surprisingly, PD98059 decreased this effect. 4,Our data show that blockade of MEK activity results in increased ,1B -adrenoceptor phosphorylation, diminished adrenoceptor function and perturbation of receptor,ERK1/2 interaction. [source]


Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2008
M J Christie
A large range of neuroadaptations develop in response to chronic opioid exposure and these are thought to be more or less critical for expression of the major features of opioid addiction: tolerance, withdrawal and processes that may contribute to compulsive use and relapse. This review considers these adaptations at different levels of organization in the nervous system including tolerance at the ,-opioid receptor itself, cellular tolerance and withdrawal in opioid-sensitive neurons, systems tolerance and withdrawal in opioid-sensitive nerve networks, as well as synaptic plasticity in opioid sensitive nerve networks. Receptor tolerance appears to involve enhancement of mechanisms of receptor regulation, including desensitization and internalization. Adaptations causing cellular tolerance are more complex but several important processes have been identified including upregulation of cAMP/PKA and cAMP response element-binding signalling and perhaps the mitogen activated PK cascades in opioid sensitive neurons that might not only influence tolerance and withdrawal but also synaptic plasticity during cycles of intoxication and withdrawal. The potential complexity of network, or systems adaptations that interact with opioid-sensitive neurons is great but some candidate neuropeptide systems that interact with ,-opioid sensitive neurons may play a role in tolerance and withdrawal, as might activation of glial signalling. Implication of synaptic forms of learning such as long term potentiation and long term depression in opioid addiction is still in its infancy but this ultimately has the potential to identify specific synapses that contribute to compulsive use and relapse. British Journal of Pharmacology (2008) 154, 384,396; doi:10.1038/bjp.2008.100; published online 14 April 2008 [source]


SPATIAL AND TEMPORAL ASPECTS OF cAMP SIGNALLING IN CARDIAC MYOCYTES

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2008
Radu V Iancu
SUMMARY 1,1 -Adrenoceptor and M2 muscarinic receptor regulation of cAMP production plays a pivotal role in autonomic regulation of cardiac myocyte function. However, not all responses are easily explained by a uniform increase or decrease in cAMP activity throughout the entire cell. 2Adenovirus expression of fluorescence resonance energy transfer (FRET)-based biosensors can be used to monitor cAMP activity in protein kinase A (PKA) signalling domains, as well as the bulk cytoplasmic domain of intact adult cardiac myocytes. 3Data obtained using FRET-based biosensors expressed in different cellular microdomains have been used to develop a computational model of compartmentalized cAMP signalling. 4A systems biology approach that uses quantitative computational modelling together with experimental data obtained using FRET-based biosensors has been used to provide evidence for the idea that compartmentation of cAMP signalling is necessary to explain the stimulatory responses to ,1 -adrenoceptor activation as well as the complex temporal responses to M2 muscarinic receptor activation. [source]