Home About us Contact | |||
Receptor Pathway (receptor + pathway)
Kinds of Receptor Pathway Selected AbstractsExperimental cerebral malaria progresses independently of the Nlrp3 inflammasomeEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2010Thornik Reimer Abstract Cerebral malaria is the most severe complication of Plasmodium falciparum infection in humans and the pathogenesis is still unclear. Using the P. berghei ANKA infection model of mice, we investigated a potential involvement of Nlrp3 and the inflammasome in the pathogenesis of cerebral malaria. Nlrp3 mRNA expression was upregulated in brain endothelial cells after exposure to P. berghei ANKA. Although ,-hematin, a synthetic compound of the parasites heme polymer hemozoin, induced the release of IL-1, in macrophages through Nlrp3, we did not obtain evidence for a role of IL-1, in vivo. Nlrp3 knock-out mice displayed a delayed onset of cerebral malaria; however, mice deficient in caspase-1, the adaptor protein ASC or the IL-1 receptor succumbed as WT mice. These results indicate that the role of Nlrp3 in experimental cerebral malaria is independent of the inflammasome and the IL-1 receptor pathway. [source] Cover Picture , Eur.EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2006The cover depicts the staining of the rat mast cell line RBL-2H3 visualized by confocal microscopy. These cells were transfected with pEGFP-F, encoding farnesylated EGFP, which localizes in membranes (green). Lysosomes and granules are shown in red resulting from accumulation of Texas Red-Dextran dye whereas nuclei staining is in blue (DAPI). Olszewski et al. (pp 997,1008) use this cell line to study TNF-, trafficking and storage in mast cells. Their results demonstrate that the mannose-6-phosphate receptor pathway and glycosylation are critical for efficient TNF-, sorting to the granules. [source] Human airway trypsin-like protease induces amphiregulin release through a mechanism involving protease-activated receptor-2-mediated ERK activation and TNF ,-converting enzyme activity in airway epithelial cellsFEBS JOURNAL, Issue 24 2005Manabu Chokki Human airway trypsin-like protease (HAT), a serine protease found in the sputum of patients with chronic airway diseases, is an agonist of protease-activated receptor-2 (PAR-2). Previous results have shown that HAT enhances the release of amphiregulin (AR); further, it causes MUC5AC gene expression through the AR-epidermal growth factor receptor pathway in the airway epithelial cell line NCI-H292. In this study, the mechanisms by which HAT-induced AR release can occur were investigated. HAT-induced AR gene expression was mediated by extracellular signal-regulated kinase (ERK) pathway, as pretreatment of cells with ERK pathway inhibitor eliminated the effect of HAT on AR mRNA. Both HAT and PAR-2 agonist peptide (PAR-2 AP) induced ERK phosphorylation; further, desensitization of PAR-2 with a brief exposure of cells to PAR-2 AP resulted in inhibition of HAT-induced ERK phosphorylation, suggesting that HAT activates ERK through PAR-2. Moreover, PAR-2 AP induced AR gene expression subsequent to protein production in the cellular fraction through the ERK pathway indicating that PAR-2-mediated activation of ERK is essential for HAT-induced AR production. However, in contrast to HAT, PAR-2 AP could not cause AR release into extracellular space; it appears that activation of PAR-2 is not sufficient for HAT-induced AR release. Finally, HAT-induced AR release was eliminated by blockade of tumour necrosis factor ,-converting enzyme (TACE) by the TAPI-1 and RNA interference, suggesting that TACE activity is necessary for HAT-induced AR release. These observations show that HAT induces AR production through the PAR-2 mediated ERK pathway, and then causes AR release by a TACE-dependent mechanism. [source] Evolution of the innate immune system: the worm perspectiveIMMUNOLOGICAL REVIEWS, Issue 1 2004Hinrich Schulenburg Summary:, Simple model organisms that are amenable to comprehensive experimental analysis can be used to elucidate the molecular genetic architecture of complex traits. They can thereby enhance our understanding of these traits in other organisms, including humans. Here, we describe the use of the nematode Caenorhabditis elegans as a tractable model system to study innate immunity. We detail our current understanding of the worm's immune system, which seems to be characterized by four main signaling cascades: a p38 mitogen-activated protein kinase, a transforming growth factor-,-like, a programed cell death, and an insulin-like receptor pathway. Many details, especially regarding pathogen recognition and immune effectors, are only poorly characterized and clearly warrant further investigation. We additionally speculate on the evolution of the C. elegans immune system, taking into special consideration the relationship between immunity, stress responses and digestion, the diversification of the different parts of the immune system in response to multiple and/or coevolving pathogens, and the trade-off between immunity and host life history traits. Using C. elegans to address these different facets of host,pathogen interactions provides a fresh perspective on our understanding of the structure and complexity of innate immune systems in animals and plants. [source] Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathwayINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2002D. A. LAMMAS Summary Patients with genetic lesions in the Type-1 cytokine/cytokine receptor pathway exhibit a selective susceptibility to severe infections with poorly pathogenic mycobacteria and non-typhi salmonella spp. These experiments of nature demonstrate that IL-12-dependent IFN, production is critical for granuloma formation and therefore host immunity against such pathogens. The essential role of granuloma formation for protective immunity to these organisms is emphasized by the differing granuloma forming capabilities and resultant clinical sequelae observed in these patients which seems to reflect their ability to produce or respond to IFN, (Fig. 9). At one pole of this spectrum, represented by the complete IFN,R1/2 deficient patients, there is a complete absence of mature granuloma formation, whereas with the less severe mutations (i.e. partial IFN,R1/2, complete IL-12p40 and complete IL-12R,1 deficiency), granuloma formation is very heterogenous with wide variations in composition being observed. This suggests that in the latter individuals, who produce partial but suboptimal IFN, responses, other influences, including pathogen virulence and host genotype may also affect the type and scale of the cellular response elicited. Figure 9. ,Spectrum of genetic susceptibility to intracellular bacteria. At one pole of this spectrum complete IFN,R deficiencies are found; at the other pole are healthy resistant individuals. Partial IFN,R1 deficiencies, and complete IL-12R,1 and IL-12p40 deficiencies can be positioned in between, albeit closer to the former end of the spectrum, with clinical outcome also depending on pathogen virulence and host compensatory immune mechanism(s). Abbreviations: IFN,R , interferon gamma receptor, IL-12R,1 , interleukin 12 receptor-1 (modified from Ottenhoff et al. (1998)). [source] Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-xLJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2007Janice LV Reeve Abstract Hypoxia and doxorubicin can cause cardiotoxicity and loss of myocardial function. These effects are due, in part, to an induction of apoptosis. Herein we identify the apoptotic pathways activated in H9c2 cells in response to hypoxia (O2/N2/CO2, 0.5:94.5:5) and doxorubicin (0.5 ,M). Although the apoptosis induced was accompanied by induction of Fas and Fas ligand, the death receptor pathway was not critical for caspase activation by either stimulus. Hypoxia induced the expression of endoplasmic reticulum (ER) stress mediators and processed ER-resident pro-caspase-12 whereas doxorubicin did not induce an ER stress response. Most importantly, both stimuli converged on mitochondria to promote apoptosis. Accumulation of cytochrome c in the cytosol coincided with the processing of pro-caspase-9 and -3. Increasing the expression of the anti-apoptotic protein Bcl-xL, either by dexamethasone or adenovirus-mediated transduction, protected H9c2 cells from doxorubicin- and hypoxia-induced apoptosis. Bcl-xL attenuated mitochondrial cytochrome crelease and reduced downstream pro-caspase processing and apoptosis. These data demonstrate that two distinct cardiomyocyte-damaging stimuli converge on mitochondria thus presenting this organelle as a potentially important therapeutic target for anti-apoptotic strategies for cardiovascular diseases. [source] Comparative proteomics of human embryonic stem cells and embryonal carcinoma cellsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 7 2010Raghothama Chaerkady Abstract Pluripotent human embryonic stem cells (ESCs) can be differentiated in vitro into a variety of cells which hold promise for transplantation therapy. Human embryonal carcinoma cells (ECCs), stem cells of human teratocarcinomas, are considered a close but malignant counterpart to human ESCs. In this study, a comprehensive quantitative proteomic analysis of ESCs and ECCs was carried out using the iTRAQ method. Using two-dimensional LC and MS/MS analyses, we identified and quantitated ,1800 proteins. Among these are proteins associated with pluripotency and development as well as tight junction signaling and TGF, receptor pathway. Nearly ,200 proteins exhibit more than twofold difference in abundance between ESCs and ECCs. Examples of early developmental markers high in ESCs include ,-galactoside-binding lectin, undifferentiated embryonic cell transcription factor-1, DNA cytosine methyltransferase 3, isoform-B, melanoma antigen family-A4, and interferon-induced transmembrane protein-1. In contrast, CD99-antigen (CD99), growth differentiation factor-3, cellular retinoic acid binding protein-2, and developmental pluripotency associated-4 were among the highly expressed proteins in ECCs. Several proteins that were highly expressed in ECCs such as heat shock 27,kDa protein-1, mitogen-activated protein kinase kinase-1, nuclear factor of , light polypeptide gene enhancer in B-cells inhibitor like-2, and S100 calcium-binding protein-A4 have also been attributed to malignancy in other systems. Importantly, immunocytochemistry was used to validate the proteomic analyses for a subset of the proteins. In summary, this is the first large-scale quantitative proteomic study of human ESCs and ECCs, which provides critical information about the regulators of these two closely related, but developmentally distinct, stem cells. [source] Contribution of death receptor and mitochondrial pathways to Fas-mediated apoptosis in the prostatic carcinoma cell line PC3THE PROSTATE, Issue 4 2002Natalya V. Guseva Abstract BACKGROUND Two main pathways of apoptosis in mammalian cells have been described: the death receptor pathway and the mitochondrial pathway. Two different cell types have been identified for Fas-mediated apoptosis, each using almost exclusively one of two different signaling pathways. Human prostatic carcinoma cell line, PC3 is sensitive to Fas-mediated apoptosis, but relation of receptor and mitochondrial pathways is not clear. METHODS Cell viability was estimated by calcein assay. Apoptosis was determined by preparation of DNA ladder. Expression of Fas-associated death domain-dominant negative (FADD-DN) and Bcl-2, activation of caspases, PARP, DFF45, Bid cleavage, and cytochrome c release were assessed using Western blotting techniques. [35S] Methionine-labeled caspase-3 was transcribed in vitro and translated using the TNT kit (Promega). A vector containing caspase-3 was prepared by the ligation of EcoR I/BamHI flanked PCR fragment of full size caspase-3 cDNA into pBlusckript II SK(+/,) (Stratagen). RESULTS Overexpression of both FADD-DN and Bcl-2 genes prevent Fas-mediated apoptosis in PC3. As predicted, overexpression of FADD-DN prevented activation of caspase-8 and Bid cleavage and attenuated the release of cytochrome c and activation of caspases -2, -7, and -9. Bcl-2 overexpression did not affect caspase-8 activation and cleavage of Bid but blocked the release of cytochrome c and activation of mitochondria localized caspases -2, -7, and,9. Overexpression of FADD-DN and Bcl-2 affected the activation of caspase-3 and PARP cleavage differently: FADD-DN attenuated the activation of caspase-3 and PARP cleavage whereas Bcl-2 overexpression prevented caspase-3 activation and completely blocked cleavage of PARP. CONCLUSIONS These data suggest that activation of caspase-8 is necessary but not sufficient to complete Fas-mediated apoptosis in PC3 cells without activation of the mitochondrial pathway. In addition, caspase-3 activation after Fas-receptor ligation involves two steps and is dependent on mitochondrial activation. Prostate 51: 231,240, 2002. © 2002 Wiley-Liss, Inc. [source] SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathwayARTHRITIS & RHEUMATISM, Issue 5 2010Viktoria Gagarina Objective The protein deacetylase SirT1 inhibits apoptosis in a variety of cell systems by distinct mechanisms, yet its role in chondrocyte death has not been explored. We undertook the present study to assess the role of SirT1 in the survival of osteoarthritic (OA) chondrocytes in humans. Methods SirT1, protein tyrosine phosphatase 1B (PTP1B), and PTP1B mutant expression plasmids as well as SirT1 small interfering RNA (siRNA) and PTP1B siRNA were transfected into primary human chondrocytes. Levels of apoptosis were determined using flow cytometry, and activation of components of the insulin-like growth factor receptor (IGFR)/Akt pathway was assessed using immunoblotting. OA and normal knee cartilage samples were subjected to immunohistochemical analysis. Results Expression of SirT1 in chondrocytes led to increased chondrocyte survival in either the presence or the absence of tumor necrosis factor ,/actinomycin D, while a reduction of SirT1 by siRNA led to increased chondrocyte apoptosis. Expression of SirT1 in chondrocytes led to activation of IGFR and the downstream kinases phosphatidylinositol 3-kinase, phosphoinosite-dependent protein kinase 1, mTOR, and Akt, which in turn phosphorylated MDM2, inhibited p53, and blocked apoptosis. Activation of IGFR occurs at least in part via SirT1-mediated repression of PTP1B. Expression of PTP1B in chondrocytes increased apoptosis and reduced IGFR phosphorylation, while down-regulation of PTP1B by siRNA significantly decreased apoptosis. Examination of cartilage from normal donors and OA patients revealed that PTP1B levels are elevated in OA cartilage in which SirT1 levels are decreased. Conclusion For the first time, it has been demonstrated that SirT1 is a mediator of human chondrocyte survival via down-regulation of PTP1B, a potent proapoptotic protein that is elevated in OA cartilage. [source] It takes two to tango: Combinations of conventional cytotoxics with compounds targeting the vascular endothelial growth factor,vascular endothelial growth factor receptor pathway in patients with solid malignanciesCANCER SCIENCE, Issue 1 2010Ingrid A. Boere Through advances in molecular biology, insight into the mechanisms driving malignancies has improved immensely and as a result, various factors playing an essential role in the biology of numerous tumor types have been revealed. By using compounds that specifically block the function of a single factor being crucial for tumor pathogenesis, it was hoped to exert antitumor activity while avoiding toxicities characteristic for conventional chemotherapy. One of the processes of crucial importance in the development of cancer, and consequently an attractive target, is angiogenesis. In recent years, several key factors for angiogenesis have been identified, including ligands, receptors, and transduction signaling factors. Of these, the vascular endothelial growth factor (VEGF) pathway has been found to be activated in numerous tumor types and considered one of the main drivers of angiogenesis. Roughly, VEGF-mediated angiogenesis can be inhibited by two approaches: either by monoclonal antibodies directed towards VEGF or its corresponding receptors, or by kinase inhibitors targeting the signal transduction of the VEGF receptors. As monotherapy, several kinase inhibitors exert antitumor activity in tumor types such as renal cell carcinoma. However, in most tumor types, the antitumor activity of compounds targeting the VEGF pathway is limited. In recent years, evidence is mounting that the paradigm of one single factor that drives malignant behavior applies rarely and is an oversimplification for most tumors in which there are multiple driving pathways. Consequently, multitargeting rather than single-targeting approaches are required. One of the means is by combining targeted agents with conventional cytotoxics. As the VEGF pathway also affects the sensitivity of tumor cells to chemotherapeutics, combinations of compounds targeting this pathway and conventional cytotoxics have been explored. This review addresses such combinations. (Cancer Sci 2009; 00: 000,000) [source] Dehydroepiandrosterone inhibits the proliferation and induces the death of HPV-positive and HPV-negative cervical cancer cells through an androgen- and estrogen-receptor independent mechanismFEBS JOURNAL, Issue 19 2009Roma A. Girón Dehydroepiandrosterone (DHEA) has a protective role against epithelial-derived carcinomas; however, the mechanisms remain unknown. We determined the effect of DHEA on cell proliferation, the cell cycle and cell death in three cell lines derived from human uterine cervical cancers infected or not with human papilloma virus (HPV). We also determined whether DHEA effects are mediated by estrogen and androgen receptors. Proliferation of C33A (HPV-negative), CASKI (HPV16-positive) and HeLa (HPV18-positive) cells was evaluated by violet crystal staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction. Flow cytometry was used to evaluate the phases of the cell cycle, and cell death was detected using a commercially available carboxyfluorescein apoptosis detection kit that determines caspase activation. DNA fragmentation was determined using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Flutamide and ICI 182,780 were used to inhibit androgen and estrogen receptors, respectively, and letrozol was used to inhibit the conversion of DHEA to estradiol. Our results show that DHEA inhibited cell proliferation in a dose-dependent manner in the three cell lines; the DHEA IC50 doses were 50, 60 and 70 ,m for C33A, CASKI and HeLa cells, respectively. The antiproliferative effect was not abrogated by inhibitors of androgen and estrogen receptors or by an inhibitor of the conversion of testosterone to estradiol, and this effect was associated with an increase in necrotic cell death in HPV-negative cells and apoptosis in HPV-positive cells. These results suggest that DHEA strongly inhibits the proliferation of cervical cancer cells, but its effect is not mediated by androgen or estrogen receptor pathways. DHEA could therefore be used as an alternative in the treatment of cervical cancer. [source] ,Klotho: A new kid on the bile acid biosynthesis block,HEPATOLOGY, Issue 1 2006Marco Arrese We have generated a line of mutant mouse that lacks ,Klotho, a protein that structurally resembles Klotho. The synthesis and excretion of bile acids were found to be dramatically elevated in these mutants, and the expression of 2 key bile acid synthase genes, cholesterol 7,-hydroxylase (Cyp7a1) and sterol 12,- hydroxylase (Cyp8b1), was strongly upregulated. Nuclear receptor pathways and the enterohepatic circulation, which regulates bile acid synthesis, seemed to be largely intact; however, bile acid,dependent induction of the small heterodimer partner (SHP) NR0B2, a common negative regulator of Cyp7a1 and Cyp8b1, was significantly attenuated. The expression of Cyp7a1 and Cyp8b1 is known to be repressed by dietary bile acids via both SHP-dependent and -independent regulations. Interestingly, the suppression of Cyp7a1 expression by dietary bile acids was impaired, whereas that of Cyp8b1 expression was not substantially altered in ,klotho,/, mice. Therefore, ,Klotho may stand as a novel contributor to Cyp7a1 -selective regulation. Additionally, ,Klotho-knockout mice exhibit resistance to gallstone formation, which suggests the potential future clinical relevance of the ,Klotho system. [source] The effects of the glutamate antagonist memantine on brain activation to an auditory perception taskHUMAN BRAIN MAPPING, Issue 11 2009Heidi van Wageningen Abstract Glutamate is critically involved in the regulation of cognitive functions in humans. There is, however, sparse evidence regarding how blocking glutamate action at the receptor site during a cognitive task affects brain activation. In the current study, the effects of the glutamate antagonist memantine were examined with functional magnetic resonance imaging (fMRI). Thirty-one healthy adults were scanned twice in a counter-balanced design, either in a no-drug session or after administration of memantine for 21 days. The subjects performed a simple auditory perception task with consonant-vowel stimuli. Group-level spatial independent component analysis (ICA) was used to decompose the data and to extract task-related activations. The focus was on four task-related ICA components with frontotemporal localization. The results showed that glutamate-blockage resulted in a significant enhancement in one component, with no significant effect in the other three components. The enhanced effect of memantine was in the middle temporal gyrus, superior frontal gyrus, and middle frontal gyrus. It is suggested that the results reflect effects of glutamatergic processes primarily through non- N -methyl- D -aspartate (NMDA) receptor pathways. Moreover, the results demonstrate that memantine can be used as a probe which allows for studying the effect of excitatory neurotransmission on neuronal activation. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source] Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neuronsJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Naoki Sotogaku Abstract In dopaminergic neurons, chondroitin sulfate (CS) proteoglycans play important roles in neuronal development and regeneration. However, due to the complexity and heterogeneity of CS, the precise structure of CS with biological activity and the molecular mechanisms underlying its influence on dopaminergic neurons are poorly understood. In this study, we investigated the ability of synthetic CS oligosaccharides and natural polysaccharides to promote the neurite outgrowth of mesencephalic dopaminergic neurons and the signaling pathways activated by CS. CS-E polysaccharide, but not CS-A, -C or -D polysaccharide, facilitated the neurite outgrowth of dopaminergic neurons at CS concentrations within the physiological range. The stimulatory effect of CS-E polysaccharide on neurite outgrowth was completely abolished by its digestion into disaccharide units with chondroitinase ABC. Similarly to CS-E polysaccharide, a synthetic tetrasaccharide displaying only the CS-E sulfation motif stimulated the neurite outgrowth of dopaminergic neurons, whereas a CS-E disaccharide or unsulfated tetrasaccharide had no effect. Analysis of the molecular mechanisms revealed that the action of the CS-E tetrasaccharide was mediated through midkine-pleiotrophin/protein tyrosine phosphatase , and brain-derived neurotrophic factor/tyrosine kinase B receptor pathways, followed by activation of the two intracellular phospholipase C (PLC) signaling cascades: PLC/protein kinase C and PLC/inositol 1,4,5-triphosphate/inositol 1,4,5-triphosphate receptor signaling leading to intracellular Ca2+ concentration-dependent activation of Ca2+/calmodulin-dependent kinase II and calcineurin. These results indicate that a specific sulfation motif, in particular the CS-E tetrasaccharide unit, represents a key structural determinant for activation of midkine, pleiotrophin and brain-derived neurotrophic factor-mediated signaling, and is required for the neuritogenic activity of CS in dopaminergic neurons. [source] Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital modelJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2009M. J. E. KUIJPERS Summary.,Background:,Atherothrombosis is a major cause of cardiovascular events. However, animal models to study this process are scarce. Objectives:,We describe the first murine model of acute thrombus formation upon plaque rupture to study atherothrombosis by intravital fluorescence microscopy. Methods:,Localized rupture of an atherosclerotic plaque in a carotid artery from Apoe,/, mice was induced in vivo using ultrasound. Rupture of the plaque and formation of localized thrombi were verified by two-photon laser scanning microscopy (TPLSM) in isolated arteries, and by immunohistochemistry. The thrombotic reaction was quantified by intravital fluorescence microscopy. Results:,Inspection of the ultrasound-treated plaques by histochemistry and TPLSM demonstrated local damage, collagen exposure, luminal thrombus formation as well as intra-plaque intrusion of erythrocytes and fibrin. Ultrasound treatment of healthy carotid arteries resulted in endothelial damage and limited platelet adhesion. Real-time intravital fluorescence microscopy demonstrated rapid platelet deposition on plaques and formation of a single thrombus that remained subocclusive. The thrombotic process was antagonized by thrombin inhibition, or by blocking of collagen or adenosine diphosphate receptor pathways. Multiple thrombi were formed in 70% of mice lacking CD40L. Conclusions:,Targeted rupture of murine plaques results in collagen exposure and non-occlusive thrombus formation. The thrombotic process relies on platelet activation as well as on thrombin generation and coagulation, and is sensitive to established and novel antithrombotic medication. This model provides new possibilities to study atherothrombosis in vivo. [source] Distinct roles of BMP receptors Type IA and IB in osteo-/chondrogenic differentiation in mesenchymal progenitors (C3H10T1/2)BIOFACTORS, Issue 2 2004Christian Kaps Abstract The functional roles of BMP type IA and IB receptors mediating differentiation into the osteogenic and chondrogenic lineage were investigated in the mesenchymal progenitor line C3H10T1/2 in vitro. The capacity of type IA and IB BMP receptors was assessed by the forced expression of the wild-type (wtBMPR-IA or IB) and of the kinase-deficient, dominant-negative form (dnBMPR-IA or -IB) in parental C3H10T1/2 progenitors as well as in C3H10T1/2 progenitors which recombinantly express BMP2 (C3H10T1/2-BMP2) or GDF5 (C3H10T1/2-GDF5). Consistent with the higher endogenous expression rate of BMPR-IA in comparison with BMPR-IB, BMPR-IA plays the dominant role in BMP2-mediated osteo-/chondrogenic development. BMPR-IB moderately influences osteogenic and hardly chondrogenic development. BMPR-IB seems to be unable to efficiently activate downstream signaling pathways upon forced expression. However, a mutation conferring constitutive activity to the BMPR-IB receptor indicates that this receptor possesses the capacity to activate downstream signaling cascades. These results suggest that in mesenchymal progenitors C3H10T1/2 BMPR-IA is responsible for the initiation of the osteogenic as well as chondrogenic development and that BMPR-IA and -IB receptor pathways are well separated in this mesenchymal progenitor line and may not substitute each other. In addition this indicates that type IB and IA BMP receptors may transmit different signals during the specification and differentiation of mesenchymal lineages. [source] Nonstructural 3/4A protease of hepatitis C virus activates epithelial growth factor,induced signal transduction by cleavage of the T-cell protein tyrosine phosphatase,HEPATOLOGY, Issue 6 2009Erwin Daniel Brenndörfer The hepatitis C virus (HCV) is a worldwide major cause of chronic liver disease with a high tendency to establish a persistent infection. To permit persistent replication of viral genomes through the cellular translation machinery without affecting host cell viability, viruses must have developed mechanisms to control cellular cascades required for sufficient viral replication, on the one hand, and to adapt viral replication to the cellular requirements on the other hand. The present study aimed to further elucidate mechanisms by which HCV targets growth factor signaling of the host cell and their implications for viral replication. The study describes a novel mechanism by which HCV influences the activation of the epithelial growth factor receptor/Akt pathway through a nonstructural (NS)3/4A-dependent down-regulation of the ubiquitously expressed tyrosine phosphatase T cell protein tyrosine phosphatase (TC-PTP). NS3/4A is demonstrated to cleave TC-PTP protease-dependently in vitro at two cleavage sites. The in vivo relevance of this finding is supported by the fact that down-regulation of TC-PTP protein expression could also be demonstrated in HCV-infected individuals and in transgenic mice with intrahepatic expression of NS3/4A. Conclusion: This down-regulation of TC-PTP results in an enhancement of epithelial growth factor (EGF)-induced signal transduction and increases basal activity of Akt, which is demonstrated to be essential for the maintenance of sufficient viral replication. Hence, therapeutic targeting of NS3/4A may not only disturb viral replication by blocking the processing of the viral polyprotein but also exerts unforeseen indirect antiviral effects, further diminishing viral replication. (HEPATOLOGY 2009;49:1810,1820.) [source] A differential role of the platelet ADP receptors P2Y1 and P2Y12 in Rac activationJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2005C. SOULET Summary., The dynamics of the actin cytoskeleton, largely controlled by the Rho family of small GTPases (Rho, Rac and Cdc42), is critical for the regulation of platelet responses such as shape change, adhesion, spreading and aggregation. Here, we investigated the role of adenosine diphosphate (ADP), a major co-activator of platelets, on the activation of Rac. ADP rapidly activated Rac in a dose-dependent manner and independently of GPIIb/IIIa and phosphoinositide 3-kinase. ADP alone, used as a primary agonist, activated Rac and its effector PAK via its P2Y1 receptor, through a Gq -dependent pathway and independently of P2Y12. The P2Y12 receptor appeared unable to activate the GTPase per se as also observed for the adenosine triphosphate receptor P2X1. Conversely, secreted ADP strongly potentiated Rac activation induced by Fc,RIIa clustering or TRAP via its P2Y12 receptor, the target of antithrombotic thienopyridines. Stimulation of the ,2A -adrenergic receptor/Gz pathway by epinephrine was able to replace the P2Y12/Gi -mediated pathway to amplify Rac activation by Fc,RIIa or by the thrombin receptor PAR-1. This co-activation appeared necessary to reach a full stimulation of Rac as well as PAK activation and actin polymerization and was blocked by a G-protein ,, subunits scavenger peptide. [source] Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-, activity in lupus patientsARTHRITIS & RHEUMATISM, Issue 2 2010Rafah Salloum Objective Interferon-, (IFN,) is a heritable risk factor for systemic lupus erythematosus (SLE). Genetic variation near IRF7 is implicated in SLE susceptibility. SLE-associated autoantibodies can stimulate IFN, production through the Toll-like receptor/IRF7 pathway. This study was undertaken to determine whether variants of IRF7 act as risk factors for SLE by increasing IFN, production and whether autoantibodies are important to this phenomenon. Methods We studied 492 patients with SLE (236 African American, 162 European American, and 94 Hispanic American subjects). Serum levels of IFN, were measured using a reporter cell assay, and single-nucleotide polymorphisms (SNPs) in the IRF7/PHRF1 locus were genotyped. Results In a joint analysis of European American and Hispanic American subjects, the rs702966 C allele was associated with the presence of anti,double-stranded DNA (anti-dsDNA) antibodies (odds ratio [OR] 1.83, P = 0.0069). The rs702966 CC genotype was only associated with higher serum levels of IFN, in European American and Hispanic American patients with anti-dsDNA antibodies (joint analysis P = 4.1 × 10,5 in anti-dsDNA,positive patients and P = 0.99 in anti-dsDNA,negative patients). In African American subjects, anti-Sm antibodies were associated with the rs4963128 SNP near IRF7 (OR 1.95, P = 0.0017). The rs4963128 CT and TT genotypes were associated with higher serum levels of IFN, only in African American patients with anti-Sm antibodies (P = 0.0012). In African American patients lacking anti-Sm antibodies, an effect of anti-dsDNA,rs702966 C allele interaction on serum levels of IFN, was observed, similar to the other patient groups (overall joint analysis P = 1.0 × 10,6). In European American and Hispanic American patients, the IRF5 SLE risk haplotype showed an additive effect with the rs702966 C allele on IFN, level in anti-dsDNA,positive patients. Conclusion Our findings indicate that IRF7/PHRF1 variants in combination with SLE-associated autoantibodies result in higher serum levels of IFN,, providing a biologic relevance for this locus at the protein level in human SLE in vivo. [source] Signaling pathways in osteoblast proinflammatory responses to infection by Porphyromonas gingivalisMOLECULAR ORAL MICROBIOLOGY, Issue 2 2008T. Ohno Introduction:, We recently investigated global gene expression in ST2 mouse stromal cells infected by the periodontal pathogen Porphyromonas gingivalis using microarray technology, and found that the bacterium induces a wide range of proinflammatory gene expression. Here, we reported the signaling pathways involved in those proinflammatory responses. Methods:, ST2 cells and primary calvarial osteoblasts from C3H/HeN, C57BL/6, and MyD88-deficient (MyD88,/,) mice were infected with P. gingivalis ATCC33277 and its gingipain-deficient mutant KDP136. Expression of the chemokines CCL5 and CXCL10, and matrix metalloproteinase-9 (MMP9) were quantified by real-time polymerase chain reaction, while phosphorylation of protein kinases and degradation of an inhibitor of nuclear factor-,B, I,B-,, were detected by Western blotting, and activation of transcriptional factors was determined by a luciferase reporter assay. The effects of inhibitors of transcriptional factors and protein kinases were also investigated. Results:, Infection by P. gingivalis elicited gene expression of CCL5, CXCL10, and MMP9 in both ST2 cells and osteoblasts. Western blot and reporter assay results revealed activation of nuclear factor-,B (NF-,B) and activator protein-1 transcription factors. The NF-,B inhibitor suppressed the expression of CCL5 and MMP9, but not that of CXCL10, whereas P. gingivalis infection induced significant CCL5 expression in MyD88,/, osteoblasts. In addition, activation of protease-activated receptors by trypsin elicited significant induction of CXCL10. Conclusion:, Our results suggest that various proinflammatory responses in P. gingivalis -infected stromal/osteoblast cells are NF-,B-dependent, but not always dependent on the Toll-like receptor/MyD88 pathway, while some responses are related to the activation of protease-activated receptors. Thus, P. gingivalis does not fully utilize well-established pathogen recognition molecules such as Toll-like receptors. [source] Transforming growth factor-, and malignant melanoma: molecular mechanismsJOURNAL OF CUTANEOUS PATHOLOGY, Issue 6 2005Mahmoud R. Hussein They signal through kinase receptor complexes on the cell surface, which phosphorylate cytoplasmic mediators (SMADs). Upon phosphorylation, SMADs march to the nucleus and interact with coactivators or corepressors to mediate the transcriptional regulation of several genes resulting in diverse effects. In tumorigenesis, malignant cells escape from the tumor-suppressive effects of TGF-, by mutational inactivation or dysregulated expression of the molecular components in TGF-, signaling pathway. Although melanoma cells are resistant to the tumor-suppressive effects of TGF-,, there are no detectable defects at the receptor/SMAD level. Therefore, in these lesions, it is possible that TGF-, effects occur independently of TGF-, receptor/SMAD pathway. This review seeks to examine the present knowledge about TGF-, receptor/SMAD signaling pathway and its related genes (SMADs, SKI, Filamin, endoglin, Follistatin, and other molecules) in melanomas. [source] |