Receptor Monoclonal Antibodies (receptor + monoclonal_antibody)

Distribution by Scientific Domains


Selected Abstracts


Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2005
Evdokia Protopapadakis
Abstract The isolation of human antibodies against muscle acetylcholine receptor (AChR), the autoantigen involved in myasthenia gravis (MG), is important for the development of therapeutically useful reagents. Monovalent antibody fragments from monoclonal antibodies against the main immunogenic region (MIR) of AChR protect the receptor from the destructive activity of MG autoantibodies. Human anti-AChR ,-subunit antibody fragments with therapeutic potential have been isolated using phage display antibody libraries. An alternative approach for obtaining human mAb has been provided by the development of humanized mice. In this report, we show that immunization of transgenic mouse strains with the extracellular domain of the human AChR ,-subunit results in antibody responses and isolation of hybridomas producing human mAb. Four specific IgM mAb were isolated and analyzed. mAb170 recognized the native receptor the best and was capable of inducing AChR antigenic modulation, suggesting its specificity for a pathogenic epitope. Moreover, the recombinant antigen-binding (Fab) fragment of this mAb competed with an anti-MIR mAb, revealing that its antigenic determinant lies in or near the MIR. Finally, Fab170 was able to compete with MG autoantibodies and protect the AChR against antigenic modulation induced by MG sera. This approach will be useful for isolating additional mAb with therapeutic potential against the other AChR subunits. [source]


Major histocompatibility complex class II, fetal skin dendritic cells are potent accessory cells of polyclonal T-cell responses

IMMUNOLOGY, Issue 2 2000
A. Elbe-Bürger
Summary Whereas dendritic cells (DC) and Langerhans cells (LC) isolated from organs of adult individuals express surface major histocompatibility complex (MHC) class II antigens, DC lines generated from fetal murine skin, while capable of activating naive, allogeneic CD8+ T cells in a MHC class I-restricted fashion, do not exhibit anti-MHC class II surface reactivity and fail to stimulate the proliferation of naive, allogeneic CD4+ T cells. To test whether the CD45+ MHC class I+ CD80+ DC line 80/1 expresses incompetent, or fails to transcribe, MHC class II molecules, we performed biochemical and molecular studies using Western blot and polymerase chain reaction analysis. We found that 80/1 DC express MHC class II molecules neither at the protein nor at the transcriptional level. Ultrastructural examination of these cells revealed the presence of a LC-like morphology with indented nuclei, active cytoplasm, intermediate filaments and dendritic processes. In contrast to adult LC, no LC-specific cytoplasmic organelles (Birbeck granules) were present. Functionally, 80/1 DC in the presence, but not in the absence, of concanavalin A and anti-T-cell receptor monoclonal antibodies stimulated a vigorous proliferative response of naive CD4+ and CD8+ T cells. Furthermore, we found that the anti-CD3-induced stimulation of naive CD4+ and CD8+ T cells was critically dependent on the expression of Fc,R on 80/1 DC and that the requirement for co-stimulation depends on the intensity of T-cell receptor signalling. [source]


Anti,interleukin-6 receptor antibody therapy favors adrenal androgen secretion in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled study

ARTHRITIS & RHEUMATISM, Issue 6 2006
Rainer H. Straub
Objective Proinflammatory cytokines such as tumor necrosis factor (TNF) were demonstrated to inhibit adrenal steroidogenesis in patients with rheumatoid arthritis (RA), and this was particularly evident in the increase in adrenal androgen levels during anti-TNF therapy. This study investigated the influence on steroidogenesis of an interleukin-6 (IL-6),neutralizing strategy using IL-6 receptor monoclonal antibodies (referred to as MRA). Methods In a placebo-controlled, double-blind, randomized study over 12 weeks in 29 patients with RA being treated with prednisolone, 13 of whom received placebo and 16 of whom received 8 mg MRA/kg body weight, the effects of MRA on serum levels of adrenocorticotropic hormone (ACTH), cortisol, 17-hydroxyprogesterone (17OHP), dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione (ASD), estrone, and 17,-estradiol, as well as their respective molar ratios, were determined. Results MRA therapy markedly improved clinical signs of inflammation (the erythrocyte sedimentation rate, swollen joint score, and Disease Activity Score in 28 joints). Serum levels of ACTH and cortisol and the molar ratio of cortisol to ACTH did not change. Although serum levels of DHEA and DHEAS remained stable during therapy, the DHEAS:DHEA molar ratio significantly decreased in treated patients (P = 0.048). Serum levels of ASD as well as the ASD:cortisol and ASD:17OHP molar ratios increased in MRA-treated patients (minimum P < 0.004). Serum levels of estrone and 17,-estradiol did not change. but the estrone:ASD molar ratio (an indicator of aromatization) decreased during 12 weeks of MRA treatment (P = 0.001). Conclusion Neutralization of IL-6 increases secretion of biologically active adrenal androgens in relation to that of precursor hormones and estrogens. This is another important indication that proinflammatory cytokines interfere with adrenal androgen steroidogenesis in patients with RA. [source]


Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2009
E. Martinelli
Summary The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor involved in the proliferation and survival of cancer cells. EGFR is the first molecular target against which monoclonal antibodies (mAb) have been developed for cancer therapy. Here we review the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy. The efficacy of EGFR-specific mAb in cancer occurs thanks to inhibition of EGFR-generated signalling; furthermore, the effects of antibodies on the immune system seem to play an important role in determining the overall anti-tumour response. In this review, attention is focused on cetuximab and panitumumab, two mAb introduced recently into clinical practice for treatment of metastatic colorectal and head and neck cancer which target the external part of EGFR. [source]