Receiver Coils (receiver + coil)

Distribution by Scientific Domains


Selected Abstracts


Design and development of a prototype endocavitary probe for high-intensity focused ultrasound delivery with integrated magnetic resonance imaging

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2007
Iain P. Wharton MRCS
Abstract Purpose To integrate a high intensity focused ultrasound (HIFU) transducer with an MR receiver coil for endocavitary MR-guided thermal ablation of localized pelvic lesions. Materials and Methods A hollow semicylindrical probe (diameter 3.2 cm) with a rectangular upper surface (7.2 cm × 3.2 cm) was designed to house a HIFU transducer and enable acoustic contact with an intraluminal wall. The probe was distally rounded to ease endocavitary insertion and was proximally tapered to a 1.5-cm diameter cylindrical handle through which the irrigation tubes (for transducer cooling) and electrical connections were passed. MR compatibility of piezoceramic and piezocomposite transducers was assessed using gradient-echo (GRE) sequences. The radiofrequency (RF) tuning of identical 6.5 cm × 2.5 cm rectangular receiver coils on the upper surface of the probe was adjusted to compensate for the presence of the conductive components of the HIFU transducers. A T1-weighted (T1-W) sliding window dual-echo GRE sequence monitored phase changes in the focal zone of each transducer. High-intensity (2400 W/cm,2), short duration (<1.5 seconds) exposures produced subtherapeutic temperature rises. Results For T1-W images, signal-to-noise ratio (SNR) improved by 40% as a result of quartering the conductive surface of the piezoceramic transducer. A piezocomposite transducer showed a further 28% improvement. SNRs for an endocavitary coil in the focal plane of the HIFU trans-ducer (4 cm from its face) were three times greater than from a phased body array coil. Local shimming improved uniformity of phase images. Phase changes were detected at subtherapeutic exposures. Conclusion We combined a HIFU transducer with an MR receiver coil in an endocavitary probe. SNRs were improved by quartering the conductive surface of the piezoceramic. Further improvement was achieved with a piezocomposite transducer. A phase change was seen on MR images during both subtherapeutic and therapeutic HIFU exposures. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc. [source]


Evaluation of intrarenal oxygenation in mice by BOLD MRI on a 3.0T human whole-body scanner,

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2007
Lu-Ping Li PhD
Abstract Purpose To extend observations on intra-renal oxygenation with blood oxygen level-dependent (BOLD) MRI in human and rats to mouse kidneys imaged with a human whole-body scanner. Materials and Methods Renal BOLD MRI studies were performed on a 3.0T scanner using a multiple gradient-echo (mGRE) sequence with a custom-designed 2.0-cm surface coil to acquire six T2*-weighted images in mice (N = 8) at an in-plane resolution of 156 × 156 ,m2. BOLD MRI data were obtained before and after administration of furosemide (10 mg/kg intravenously [i.v.]). Results The mean weight of eight mice was 24.6 ± 1.0 g. The baseline renal R2* (mean ± standard error [SE]) was 28.6 ± 2.1 seconds,1 in the renal cortex (CO), 35.4 ± 2.2 in the outer medulla (OM), and 21.2 ± 2.1 seconds,1 in the inner medulla (IM). The BOLD response to furosemide (,R2*) was 4.1 ± 1.4 in the CO, 10.1 ± 2.1 seconds,1 in the OM, and 3.4 ± 0.8 seconds,1 in the IM in mice. Conclusion Intrarenal BOLD MR images with sufficiently high resolution can be obtained on a human whole-body scanner when combined with a small receiver coil to allow studies in mice. Both baseline R2* and ,R2* values following administration of furosemide were consistent with previous experience in humans and rats. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc. [source]


The feasibility of electromagnetic gradiometer measurements

GEOPHYSICAL PROSPECTING, Issue 3 2001
Daniel Sattel
The quantities measured in transient electromagnetic (TEM) surveys are usually either magnetic field components or their time derivatives. Alternatively it might be advantageous to measure the spatial derivatives of these quantities. Such gradiometer measurements are expected to have lower noise levels due to the negative interference of ambient noise recorded by the two receiver coils. Error propagation models are used to compare quantitatively the noise sensitivities of conventional and gradiometer TEM data. To achieve this, eigenvalue decomposition is applied on synthetic data to derive the parameter uncertainties of layered-earth models. The results indicate that near-surface gradient measurements give a superior definition of the shallow conductivity structure, provided noise levels are 20,40 times smaller than those recorded by conventional EM instruments. For a fixed-wing towed-bird gradiometer system to be feasible, a noise reduction factor of at least 50,100 is required. One field test showed that noise reduction factors in excess of 60 are achievable with gradiometer measurements. However, other collected data indicate that the effectiveness of noise reduction can be hampered by the spatial variability of noise such as that encountered in built-up areas. Synthetic data calculated for a vertical plate model confirm the limited depth of detection of vertical gradient data but also indicate some spatial derivatives which offer better lateral resolution than conventional EM data. This high sensitivity to the near-surface conductivity structure suggests the application of EM gradiometers in areas such as environmental and archaeological mapping. [source]


Accelerating non-contrast-enhanced MR angiography with inflow inversion recovery imaging by skipped phase encoding and edge deghosting (SPEED)

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2010
Zheng Chang PhD
Abstract Purpose: To accelerate non-contrast-enhanced MR angiography (MRA) with inflow inversion recovery (IFIR) with a fast imaging method, Skipped Phase Encoding and Edge Deghosting (SPEED). Materials and Methods: IFIR imaging uses a preparatory inversion pulse to reduce signals from static tissue, while leaving inflow arterial blood unaffected, resulting in sparse arterial vasculature on modest tissue background. By taking advantage of vascular sparsity, SPEED can be simplified with a single-layer model to achieve higher efficiency in both scan time reduction and image reconstruction. SPEED can also make use of information available in multiple coils for further acceleration. The techniques are demonstrated with a three-dimensional renal non-contrast-enhanced IFIR MRA study. Results: Images are reconstructed by SPEED based on a single-layer model to achieve an undersampling factor of up to 2.5 using one skipped phase encoding direction. By making use of information available in multiple coils, SPEED can achieve an undersampling factor of up to 8.3 with four receiver coils. The reconstructed images generally have comparable quality as that of the reference images reconstructed from full k -space data. Conclusion: As demonstrated with a three-dimensional renal IFIR scan, SPEED based on a single-layer model is able to reduce scan time further and achieve higher computational efficiency than the original SPEED. J. Magn. Reson. Imaging 2010;31:757,765. © 2010 Wiley-Liss, Inc. [source]


Design and development of a prototype endocavitary probe for high-intensity focused ultrasound delivery with integrated magnetic resonance imaging

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2007
Iain P. Wharton MRCS
Abstract Purpose To integrate a high intensity focused ultrasound (HIFU) transducer with an MR receiver coil for endocavitary MR-guided thermal ablation of localized pelvic lesions. Materials and Methods A hollow semicylindrical probe (diameter 3.2 cm) with a rectangular upper surface (7.2 cm × 3.2 cm) was designed to house a HIFU transducer and enable acoustic contact with an intraluminal wall. The probe was distally rounded to ease endocavitary insertion and was proximally tapered to a 1.5-cm diameter cylindrical handle through which the irrigation tubes (for transducer cooling) and electrical connections were passed. MR compatibility of piezoceramic and piezocomposite transducers was assessed using gradient-echo (GRE) sequences. The radiofrequency (RF) tuning of identical 6.5 cm × 2.5 cm rectangular receiver coils on the upper surface of the probe was adjusted to compensate for the presence of the conductive components of the HIFU transducers. A T1-weighted (T1-W) sliding window dual-echo GRE sequence monitored phase changes in the focal zone of each transducer. High-intensity (2400 W/cm,2), short duration (<1.5 seconds) exposures produced subtherapeutic temperature rises. Results For T1-W images, signal-to-noise ratio (SNR) improved by 40% as a result of quartering the conductive surface of the piezoceramic transducer. A piezocomposite transducer showed a further 28% improvement. SNRs for an endocavitary coil in the focal plane of the HIFU trans-ducer (4 cm from its face) were three times greater than from a phased body array coil. Local shimming improved uniformity of phase images. Phase changes were detected at subtherapeutic exposures. Conclusion We combined a HIFU transducer with an MR receiver coil in an endocavitary probe. SNRs were improved by quartering the conductive surface of the piezoceramic. Further improvement was achieved with a piezocomposite transducer. A phase change was seen on MR images during both subtherapeutic and therapeutic HIFU exposures. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc. [source]


On the noise correlation matrix for multiple radio frequency coils

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2007
Ryan Brown
Abstract Noise correlation between multiple receiver coils is discussed using principles of statistical physics. Using the general fluctuation-dissipation theorem we derive the prototypic correlation formula originally determined by Redpath (Magn Res Med 1992;24:85,89), which states that correlation of current spectral noise depends on the real part of the inverse impedance matrix at a given frequency. A distinct correlation formula is also derived using the canonical partition function, which states that correlation of total current noise over the entire frequency spectrum depends on the inverse inductance matrix. The Kramers-Kronig relation is used to equate the inverse inductance matrix to the spectral integral of the inverse impedance matrix, implying that the total noise is equal to the summation of the spectral noise over the entire frequency spectrum. Previous conflicting arguments on noise correlation may be reconciled by differentiating between spectral and total noise correlation. These theoretical derivations are verified experimentally using two-coil arrays. Magn Reson Med 58:218,224, 2007. © 2007 Wiley-Liss, Inc. [source]


x-f choice: Reconstruction of undersampled dynamic MRI by data-driven alias rejection applied to contrast-enhanced angiography

MAGNETIC RESONANCE IN MEDICINE, Issue 4 2006
Shaihan J. Malik
Abstract A technique for reconstructing dynamic undersampled MRI data, termed "x-f choice," was developed and applied to dynamic contrast-enhanced MR angiography (DCE-MRA). Regular undersampling in k-t space (a hybrid of k -space and time) creates aliasing in the conjugate x-f space that must be resolved. When regions in the object containing fast dynamic change are sparse, as in DCE-MRA, signal overlap caused by aliasing is often much less than the undersample factor would imply. x-f Choice reconstruction identifies overlapping signals using a model of the full non-aliased x-f space that is automatically generated from the undersampled data, and applies parallel imaging (PI) to separate them. No extra reference scans are required to generate either the model or the coil sensitivity maps. At each location in the reconstructed images, g -factor noise amplification is compared with predicted reconstruction errors to obtain an optimized solution. Acceleration factors greater than the number of receiver coils are possible, but are limited by the sparseness of the dynamic content and the signal-to-noise ratio (SNR) (in DCE-MRA the latter is dominant). Temporal fidelity was validated for up to a factor 10 speed-up using retrospectively undersampled data from a six-coil array. The method was tested on volunteers using fivefold prospective undersampling. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source]


Non-Fourier-encoded parallel MRI using multiple receiver coils

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2004
Dimitris Mitsouras
Abstract This paper describes a general theoretical framework that combines non-Fourier (NF) spatially-encoded MRI with multichannel acquisition parallel MRI. The two spatial-encoding mechanisms are physically and analytically separable, which allows NF encoding to be expressed as complementary to the inherent encoding imposed by RF receiver coil sensitivities. Consequently, the number of NF spatial-encoding steps necessary to fully encode an FOV is reduced. Furthermore, by casting the FOV reduction of parallel imaging techniques as a dimensionality reduction of the k -space that is NF-encoded, one can obtain a speed-up of each digital NF spatial excitation in addition to accelerated imaging. Images acquired at speed-up factors of 2× to 8× with a four-element RF receiver coil array demonstrate the utility of this framework and the efficiency afforded by it. Magn Reson Med 52:321,328, 2004. © 2004 Wiley-Liss, Inc. [source]


Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD,

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2003
Michael A. Guttman
Abstract Reduced field-of-view (FOV) acceleration using time-adaptive sensitivity encoding (TSENSE) or unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD) can improve the depiction of motion in real-time MRI. However, increased computational resources are required to maintain a high frame rate and low latency in image reconstruction and display. A high-performance software system has been implemented to perform TSENSE and UNFOLD reconstructions for real-time MRI with interactive, on-line display. Images were displayed in the scanner room to investigate image-guided procedures. Examples are shown for normal volunteers and cardiac interventional experiments in animals using a steady-state free precession (SSFP) sequence. In order to maintain adequate image quality for interventional procedures, the imaging rate was limited to seven frames per second after an acceleration factor of 2 with a voxel size of 1.8 × 3.5 × 8 mm. Initial experiences suggest that TSENSE and UNFOLD can each improve the compromise between spatial and temporal resolution in real-time imaging, and can function well in interactive imaging. UNFOLD places no additional constraints on receiver coils, and is therefore more flexible than SENSE methods; however, the temporal image filtering can blur motion and reduce the effective acceleration. Methods are proposed to overcome the challenges presented by the use of TSENSE in interactive imaging. TSENSE may be temporarily disabled after changing the imaging plane to avoid transient artifacts as the sensitivity coefficients adapt. For imaging with a combination of surface and interventional coils, a hybrid reconstruction approach is proposed whereby UNFOLD is used for the interventional coils, and TSENSE with or without UNFOLD is used for the surface coils. Magn Reson Med 50:315,321, 2003. Published 2003 Wiley-Liss, Inc. [source]