Home About us Contact | |||
Reciprocal Inhibition (reciprocal + inhibition)
Selected AbstractsActive properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibitionTHE JOURNAL OF PHYSIOLOGY, Issue 5 2008C. J. Heckman The dendrites of spinal motoneurones are highly active, generating a strong persistent inward current (PIC) that has an enormous impact on processing of synaptic input. The PIC is subject to regulation by descending neuromodulatory systems releasing the monoamines serotonin and noradrenaline. At high monoaminergic drive levels, the PIC dominates synaptic integration, generating an intrinsic dendritic current that is as much as 5-fold larger than the current entering via synapses. Without the PIC, motoneurone excitability is very low. Presumably, this descending control of the synaptic integration via the PIC is used to adjust the excitability (gain) of motoneurones for different motor tasks. A problem with this gain control is that monoaminergic input to the cord is very diffuse, affecting many motor pools simultaneously, probably including both agonists and antagonists. The PIC is, however, exquisitely sensitive to the reciprocal inhibition mediated by length sensitive muscle spindle Ia afferents and Ia interneurones. Reciprocal inhibition is tightly focused, shared only between strict mechanical antagonists, and thus can act to ,sculpt' specific movement patterns out of a background of diffuse neuromodulation. Thus it is likely that motoneurone gain is set by the interaction between diffuse descending neuromodulation and specific and focused local synaptic inhibitory circuits. [source] Thinking about flagellar oscillationCYTOSKELETON, Issue 8 2009Charles J. Brokaw Abstract Bending of cilia and flagella results from sliding between the microtubular outer doublets, driven by dynein motor enzymes. This review reminds us that many questions remain to be answered before we can understand how dynein-driven sliding causes the oscillatory bending of cilia and flagella. Does oscillation require switching between two distinct, persistent modes of dynein activity? Only one mode, an active forward mode, has been characterized, but an alternative mode, either inactive or reverse, appears to be required. Does switching between modes use information from curvature, sliding direction, or both? Is there a mechanism for reciprocal inhibition? Can a localized capability for oscillatory sliding become self-organized to produce the metachronal phase differences required for bend propagation? Are interactions between adjacent dyneins important for regulation of oscillation and bend propagation? Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Corticospinal control of antagonistic muscles in the catEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Christian Ethier Abstract We recently suggested that movement-related inter-joint muscle synergies are recruited by selected excitation and selected release from inhibition of cortical points. Here we asked whether a similar cortical mechanism operates in the functional linking of antagonistic muscles. To this end experiments were done on ketamine-anesthetized cats. Intracortical microstimulation (ICMS) and intramuscular electromyographic recordings were used to find and characterize wrist, elbow and shoulder antagonistic motor cortical points. Simultaneous ICMS applied at two cortical points, each evoking activity in one of a pair of antagonistic muscles, produced co-contraction of antagonistic muscle pairs. However, we found an obvious asymmetry in the strength of reciprocal inhibition; it was always significantly stronger on physiological extensors than flexors. Following intravenous injection of a single bolus of strychnine, a cortical point at which only a physiological flexor was previously activated also elicited simultaneous activation of its antagonist. This demonstrates that antagonistic corticospinal neurons are closely grouped, or intermingled. To test whether releasing a cortical point from inhibition allows it to be functionally linked with an antagonistic cortical point, one of three GABAA receptor antagonists, bicuculline, gabazine or picrotoxin, was injected iontophoretically at one cortical point while stimulation was applied to an antagonistic cortical point. This coupling always resulted in co-contraction of the represented antagonistic muscles. Thus, antagonistic motor cortical points are linked by excitatory intracortical connections held in check by local GABAergic inhibition, with reciprocal inhibition occurring at the spinal level. Importantly, the asymmetry of cortically mediated reciprocal inhibition would appear significantly to bias muscle maps obtained by ICMS in favor of physiological flexors. [source] Xenopus embryonic spinal neurons recorded in situ with patch-clamp electrodes , conditional oscillators after all?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003Simon P. Aiken Abstract The central pattern generator for swimming Xenopus embryo is organized as two half-centres linked by reciprocal inhibition. Microelectrode recordings suggest that Xenopus neurons are poorly excitable, necessitating a key role for postinhibitory rebound in the operation of the central pattern generator. However the Xenopus central pattern generator seems unusual in that the component neurons apparently have no intrinsic or conditional rhythmogenic properties. We have re-examined the firing properties of Xenopus embryo spinal neurons by making patch-clamp recordings in situ from intact spinal cord. Recordings made from 99 neurons were divided into three groups. Central pattern generator neurons overwhelmingly (44/51) fired trains of action potentials in response to current injection. Just over half of the sensory interneurons (13/22) also fired trains of action potentials. Neurons that received no synaptic inputs during swimming mostly fired just one or two action potentials (22/26). Thirty-four neurons were identified morphologically. Commissural (8/12) and descending (6/6) interneurons, key components of the spinal central pattern generator, fired repetitive trains of action potentials during current injection. Neurons that were not part of the central pattern generator did not demonstrate this preponderance for repetitive firing. Analysis of the interspike intervals during current injection revealed that the majority of central pattern generators, descending and commissural interneurons, could readily fire at frequencies up to twice that of swimming. We suggest that Xenopus neurons can be considered as conditional oscillators: in the presence of unpatterned excitation they exhibit an ability to fire rhythmically. This property makes the Xenopus embryonic central pattern generator more similar to other model central pattern generators than has hitherto been appreciated. [source] Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammalsEVOLUTION AND DEVELOPMENT, Issue 6 2008Hitoshi Niwa SUMMARY Uterine nourishment of embryos by the placenta is a key feature of mammals. Although a variety of placenta types exist, they are all derived from the trophectoderm (TE) cell layer of the developing embryo. Egg-laying mammals (platypus and echidnas) are distinguished by a very short intrauterine embryo development, in which a simple placenta forms from TE-like cells. The Pou5f1 gene encodes a class V POU family transcription factor Oct3/4. In mice, Oct3/4 together with the highly conserved caudal -related homeobox transcription factor Cdx2, determines TE fate in pre-implantation development. In contrast to Cdx2, Pou5f1 has only been identified in eutherian mammals and marsupials, whereas, in other vertebrates, pou2 is considered to be the Pou5f1 ortholog. Here, we show that platypus and opossum genomes contain a Pou5f1 and pou2 homolog, pou2-related, indicating that these two genes are paralogues and arose by gene duplication in early mammalian evolution. In a complementation assay, we found that platypus or human Pou5f1, but not opossum or zebrafish pou2, restores self-renewal in Pou5f1 -null mouse ES cells, showing that platypus possess a fully functional Pou5f1 gene. Interestingly, we discovered that parts of one of the conserved regions (CR4) is missing from the platypus Pou5f1 promoter, suggesting that the autoregulation and reciprocal inhibition between Pou5f1 and Cdx2 evolved after the divergence of monotremes and may be linked to the development of more elaborate placental types in marsupial and eutherian mammals. [source] Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibitionTHE JOURNAL OF PHYSIOLOGY, Issue 5 2008C. J. Heckman The dendrites of spinal motoneurones are highly active, generating a strong persistent inward current (PIC) that has an enormous impact on processing of synaptic input. The PIC is subject to regulation by descending neuromodulatory systems releasing the monoamines serotonin and noradrenaline. At high monoaminergic drive levels, the PIC dominates synaptic integration, generating an intrinsic dendritic current that is as much as 5-fold larger than the current entering via synapses. Without the PIC, motoneurone excitability is very low. Presumably, this descending control of the synaptic integration via the PIC is used to adjust the excitability (gain) of motoneurones for different motor tasks. A problem with this gain control is that monoaminergic input to the cord is very diffuse, affecting many motor pools simultaneously, probably including both agonists and antagonists. The PIC is, however, exquisitely sensitive to the reciprocal inhibition mediated by length sensitive muscle spindle Ia afferents and Ia interneurones. Reciprocal inhibition is tightly focused, shared only between strict mechanical antagonists, and thus can act to ,sculpt' specific movement patterns out of a background of diffuse neuromodulation. Thus it is likely that motoneurone gain is set by the interaction between diffuse descending neuromodulation and specific and focused local synaptic inhibitory circuits. [source] |