Recipient Rats (recipient + rat)

Distribution by Scientific Domains


Selected Abstracts


A new vascularized adrenal transplantation model in the rat

MICROSURGERY, Issue 4 2001
Dingyi Liu M.D.
A new microsurgical model of adrenal transplantation in the rat is described. An adrenal graft with its vascular supply, adrenal artery and vein, and the attachment of a segment of aorta and inferior vena cava (IVC) was transplanted to a recipient rat with end-to-side anastomoses between the donor IVC segment and the recipient IVC and between the donor aortic segment and the recipient aorta using 10-0 nylon sutures. Using this model, different groups of recipient rats received iso- or allograft with or without immunosuppressive treatment were tested. This model provides a reliable and useful tool for research on endocrinology. © 2001 Wiley-Liss, Inc. MICROSURGERY 21:124,126 2001 [source]


Immunosuppression using the mTOR inhibition mechanism affects replacement of rat liver with transplanted cells,

HEPATOLOGY, Issue 2 2006
Yao-Ming Wu
Successful grafting of tissues or cells from mismatched donors requires systemic immunosuppression. It is yet to be determined whether immunosuppressive manipulations perturb transplanted cell engraftment or proliferation. We used syngeneic and allogeneic cell transplantation assays based on F344 recipient rats lacking dipeptidyl peptidase IV enzyme activity to identify transplanted hepatocytes. Immunosuppressive drugs used were tacrolimus (a calcineurin inhibitor) and its synergistic partners, rapamycin (a regulator of the mammalian target of rapamycin [mTOR]) and mycophenolate mofetil (an inosine monophosphate dehydrogenase inhibitor). First, suitable drug doses capable of inducing long-term survival of allografted hepatocytes were identified. In pharmacologically effective doses, rapamycin enhanced cell engraftment by downregulating hepatic expression of selected inflammatory cytokines but profoundly impaired proliferation of transplanted cells, which was necessary for liver repopulation. In contrast, tacrolimus and/or mycophenolate mofetil perturbed neither transplanted cell engraftment nor their proliferation. Therefore, mTOR-dependent extracellular and intracellular mechanisms affected liver replacement with transplanted cells. In conclusion, insights into the biological effects of specific drugs on transplanted cells are critical in identifying suitable immunosuppressive strategies for cell therapy. (HEPATOLOGY 2006;44:410,419.) [source]


Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated "intestinal-type" biliary cancer chemically induced in rat liver

HEPATOLOGY, Issue 6 2000
Guan-Hua Lai
Recently, we observed that Met, the receptor for hepatocyte growth factor/scatter factor (HGF/SF), is overexpressed in epithelial cells of both early-appearing intestinal metaplastic glands in precancerous hepatic cholangiofibrotic tissue and neoplastic glands in later developed intestinal-type of cholangiocarcinoma originated from the furan rat model of cholangiocarcinogenesis when compared with normal and hyperplastic intrahepatic biliary epithelia. We now show that HGF/SF is also aberrantly expressed in a manner closely paralleling that of its receptor in the neoplastic epithelial cells of furan-induced rat cholangiocarcinomas and in a majority of metaplastic epithelial cells within earlier formed precancerous hepatic cholangiofibrotic tissue. Using in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR), we further showed specific expression of HGF/SF messenger RNA (mRNA) in a novel rat cholangiocarcinoma epithelial cell line overexpressing Met. This cholangiocarcinoma cell line, termed C611B, was established from tumorigenic cells isolated from a furan-induced transplantable tumor. Moreover, we detected by in situ hybridization strong expression of HGF/SF mRNA transcripts in the cancerous epithelial glands of cholangiocarcinoma developed in recipient rats after in vivo cell transplantation of C611B cells. In contrast, mRNA transcripts and protein immunoreactivity for this cytokine were not detected in hepatocytes and biliary epithelial cells in adult normal rat liver nor in rat hyperplastic intrahepatic biliary epithelium. Our results clearly show that HGF/SF becomes aberrantly expressed in cholangiocarcinoma epithelium and in putative precancerous intestinal metaplastic epithelium induced in the liver of furan-treated rats. [source]


Simultaneous administration of a low-dose mixture of donor bone marrow cells and splenocytes plus adenovirus containing the CTLA4Ig gene result in stable mixed chimerism and long-term survival of cardiac allograft in rats

IMMUNOLOGY, Issue 2 2003
Yongzhu Jin
Summary T-cell costimulatory blockade combined with donor bone marrow transfusion may induce mixed chimerism, rendering robust tolerance in transplanted organs and cells. However, most protocols entail high doses of donor bone marrow cells (BMCs) or repeated administration of costly agents that block costimulatory pathways, thus delaying clinical development. To circumvent these shortcomings, we developed a strategy in which the dosage of donor BMCs was reduced but compensated by donor splenocytes (SPLCs). Furthermore, repeated administration of costly agents was replaced with a single injection of adenovirus expressing a gene of interest. In rat cardiac transplantation models, cardiac allografts from DA (RT-1a) rats were transplanted heterotopically into the abdomen of LEW (RT-11) recipient rats. Immediately after cardiac transplantation, an adenovirus vector (AdCTLA4Ig; 5 × 109 plaque-forming units) containing the gene for CTLA4Ig was administered to recipients (n = 6) simultaneously with a low dose of donor BMCs (1 × 108/rat) and SPLCs (5 × 107/rat) via the portal vein. The treated LEW recipient rats developed long-lasting mixed chimerism (>10% at >100 days) and exhibited long-term cardiac allografts (mean survival time of > 200 days) compared with control recipients. Moreover, recipients displaying long-lasting mixed chimerism accepted subsequent donor skin allografts while promptly rejecting third-party skin allografts. These results suggest that blockade of the CD28-B7 pathway, using adenovirus-mediated CTLA4Ig gene transfer, in concert with a low dosage of donor BMCs and SPLCs, may represent a feasible strategy to induce stable mixed chimerism and permit long-term survival of cardiac allografts. [source]


Effect of adoptive transfer of antigen-specific B cells on periodontal bone resorption

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2006
Y. Harada
Background and Objectives:, Host immune responses to periodontal pathogens have been considered to contribute to the alveolar bone destruction in periodontitis. However, the role of B lymphocytes in the pathogenesis of periodontal bone loss is not clear. Methods:, We examined the effect of adoptive transfer of antigen-specific B cells from rat spleens on experimental periodontal bone resorption. Donor rats were immunized intraperitoneally (i.p.) with formalin-killed Actinobacillus actinomycetemcomitans. Antigen-specific B cells were prepared from splenocytes by first binding CD43+ cells to Petri dishes coated with anti-CD43 antibody to remove T cells, and non-binding cells were passed through a nylon wool column to deplete accessory cells. The retained cells were then collected and bound to A. actinomycetemcomitans- coated Petri dishes for enrichment of A. actinomycetemcomitans -binding B cells (AAB). A. actinomycetemcomitans non-binding B cells (ANB) and B cells from non-immunized donor rats (NIB) were also collected from these procedures. Each type of B cell was injected into a group of recipient rats that were then orally infected with live A. actinomycetemcomitans. Results:, At termination, the antibody levels to A. actinomycetemcomitans in serum and gingival wash fluids were significantly higher in the recipients transferred with AAB when compared to the recipients transferred with ANB or NIB. A markedly elevated number of antibody-forming cells were observed in the spleens of the recipients transferred with AAB, and these recipient rats also exhibited significantly increased bone resorption when compared to the other groups. Conclusions:, It is suggested that B cells can contribute to periodontal bone resorption and that antigen-triggering of B cells is required for the bone resorption. [source]


A new vascularized adrenal transplantation model in the rat

MICROSURGERY, Issue 4 2001
Dingyi Liu M.D.
A new microsurgical model of adrenal transplantation in the rat is described. An adrenal graft with its vascular supply, adrenal artery and vein, and the attachment of a segment of aorta and inferior vena cava (IVC) was transplanted to a recipient rat with end-to-side anastomoses between the donor IVC segment and the recipient IVC and between the donor aortic segment and the recipient aorta using 10-0 nylon sutures. Using this model, different groups of recipient rats received iso- or allograft with or without immunosuppressive treatment were tested. This model provides a reliable and useful tool for research on endocrinology. © 2001 Wiley-Liss, Inc. MICROSURGERY 21:124,126 2001 [source]


Experimental study of vascularized nerve graft: Evaluation of nerve regeneration using choline acetyltransferase activity

MICROSURGERY, Issue 2 2001
Makoto Iwai M.D.
A comparative study of nerve regeneration was performed on vascularized nerve graft (VNG) and free nerve graft (FNG) in Fischer strain rats. A segment of the sciatic nerve with vascular pedicle of the femoral artery and vein was harvested from syngeneic donor rat for the VNG group and the sciatic nerve in the same length without vascular pedicle was harvested for the FNG group. They were transplanted to a nerve defect in the sciatic nerve of syngeneic recipient rats. At 2, 4, 6, 8, 12, 16, and 24 weeks after operation, the sciatic nerves were biopsied and processed for evaluation of choline acetyltransferase (CAT) activity, histological studies, and measurement of wet weight of the muscle innervated by the sciatic nerve. Electrophysiological evaluation of the grafted nerve was also performed before sacrifice. The average CAT activity in the distal to the distal suture site was 383 cpm in VNG and 361 cpm in FNG at 2 weeks; 6,189 cpm in VNG and 2,264 cpm in FNG at 4 weeks; and 11,299 cpm in VNG and 9,424 cpm in FNG at 6 weeks postoperatively. The value of the VNG group was statistically higher than that of the FNG group at 4 weeks postoperatively. Electrophysiological and histological findings also suggested that nerve regeneration in the VNG group was superior to that in the FNG group during the same period. However, there was no significant difference between the two groups after 6 weeks postoperatively in any of the evaluations. The CAT measurement was useful in the experiments, because it was highly sensitive and reproducible. © 2001 Wiley-Liss, Inc. MICROSURGERY 24:43,51 2001 [source]


Influence of Immunosuppression on Alloresponse, Inflammation and Contractile Function of Graft After Intestinal Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010
J. Fujishiro
In small bowel transplantation (SBTx), graft manipulation, ischemia/reperfusion injury and acute rejection initiate a severe cellular and molecular inflammatory response in the muscularis propria leading to impaired motility of the graft. This study examined and compared the effect of tacrolimus and sirolimus on inflammation in graft muscularis. After allogeneic orthotopic SBTx, recipient rats were treated with tacrolimus or sirolimus. Tacrolimus and sirolimus attenuated neutrophilic, macrophage and T-cell infiltration in graft muscularis, which was associated with reduced apoptotic cell death. Nonspecific inflammatory mediators (IL-6, MCP-1) and T-cell activation markers (IL-2, IFN-,) were highly upregulated in allogeneic control graft muscularis 24 h and 7 days after SBTx, and tacrolimus and sirolimus significantly suppressed upregulation of these mediators. In vitro organ bath method demonstrated a severe decrease in graft smooth muscle contractility in allogeneic control (22% of normal control). Correlating with attenuated upregulation of iNOS, tacrolimus and sirolimus treatment significantly improved contractility (64% and 72%, respectively). Although sirolimus reduced cellular and molecular inflammatory response more efficiently after 24 h, contrary tacrolimus prevented acute rejection more efficiently. In conclusion, tacrolimus and sirolimus attenuate cellular and molecular inflammatory response in graft muscularis and subsequent dysmotility of the graft after allogeneic SBTx. [source]


Early Hemodynamic Injury During Donor Brain Death Determines the Severity of Primary Graft Dysfunction after Lung Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2007
V. S. Avlonitis
Sympathetic discharge and hypertensive crisis often accompany brain death, causing neurogenic pulmonary edema. Progressive systemic inflammatory response develops, which can injure the lung further. We investigated whether (a) early hemodynamic injury during donor brain death increases reperfusion injury after lung transplantation and (b) delaying lung recovery would augment reperfusion injury further, because of the progressive systemic inflammatory response in the donor. Brain death was induced by intracranial balloon inflation in rats, with or without ,-adrenergic blockade pretreatment to prevent the hypertensive crisis. Another group of rats had a sham procedure. Lungs were retrieved 15 min after brain death or sham procedure and reperfused using recipient rats. In a fourth group, brain death was induced and the lungs were retrieved 5 h after brain death and reperfused. Postreperfusion, lungs retrieved early from untreated brain-dead donors developed more severe reperfusion injury, as assessed by functional parameters and inflammatory markers, than those from sham or alpha-blockade-treated donors. Lungs retrieved late from brain-dead donors had similar inflammatory markers after reperfusion to those retrieved early, but significantly lower pulmonary vascular resistance. Early hemodynamic damage during donor brain death increases reperfusion injury after lung transplantation. Delaying retrieval may allow the lung to recover from the hemodynamic injury. [source]