Home About us Contact | |||
Recalcitrant Compounds (recalcitrant + compound)
Selected AbstractsTemperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substratesGLOBAL CHANGE BIOLOGY, Issue 6 2010J. Å. MARTIN WETTERSTEDT Abstract Kinetic theory suggests that the temperature sensitivity of decomposition of soil organic matter should increase with increasing recalcitrance. This ,temperature,quality hypothesis' was tested in a laboratory experiment. Microcosms with wheat straw, spruce needle litter and mor humus were initially placed at 5, 15 and 25 °C until the same cumulative amount of CO2 had been respired. Thereafter, microcosms from each single temperature were moved to a final set of incubation temperatures of 5, 15 and 25 °C. Straw decomposed faster than needle litter at 25 and 15 °C, but slower than needle litter at 5 °C, and showed a higher temperature sensitivity (expressed as Q10) than needle litter at low temperatures. When moved to the same temperature, needle litter initially incubated at 5 and 15 °C had significantly higher respiration rates in the final incubation than litters initially placed at 25 °C. Mor humus placed at equal temperatures during the initial and final incubations had higher cumulative respiration during the final incubation than humus experiencing a shift in temperature, both up- and downwards. These results indicate that other factors than substrate quality are needed to fully explain the temperature dependence. In agreement with the hypothesis, Q10 was always higher for the temperature step between 5 and 15 °C than between 15 and 25 °C. Also in agreement with the temperature,quality hypothesis, Q10 significantly increased with increasing degree of decomposition in five out of the six constant temperature treatments with needle litter and mor humus. Q10s for substrates moved between temperatures tended to be higher than for substrates remaining at the initial temperature and an upward shift in temperature increased Q10 more than a downward shift. This study largely supports the temperature,quality hypothesis. However, other factors like acclimation and synthesis of recalcitrant compounds can modify the temperature response. [source] Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spent washJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004M. Ghosh Abstract Aims:, The aim of this study was to isolate and identify bacterial strains capable of using recalcitrant compounds of molasses spent wash as sole carbon source from the soils of abandoned sites of distillery effluent discharge and characterize their ability of reducing the chemical oxygen demand (COD) of the spent wash. Methods and Results:, The isolates were grouped into six haplotypes by amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR. The phylogenetic position of the representatives of the six main haplotypes strains was determined by 16S rDNA sequencing. They showed maximum similarity to six genera viz. Pseudomonas, Enterobacter, Stenotrophomonas, Aeromonas, Acinetobacter and Klebsiella. The extent of COD (44%) reduced collectively by the six strains was equal to that reduced individually by Aeromonas, Acinetobacter, Pseudomonas and Enterobacter. With spent wash as sole carbon source, the COD reducing strains grew faster at 37°C than 30°C. Conclusions:, Bacterial strains capable of degrading some of the recalcitrant compounds of anaerobically digested molasses spent wash can be isolated from the soils of abandoned sites of distillery effluent discharge. Biostimulation of these bacteria, which can degrade 44% of the carbon compounds of anaerobically digested molasses spent wash can be achieved by nitrogen fertilization and relatively higher temperature. Significance and Impact of the Study:, Supplementation of nitrogen source and controlling the temperature can be used in evolving strategies for in situ bioremediation of anaerobically digested spent wash from distilleries. [source] Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activityJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2010Hui-Jun Xie Abstract BACKGROUND: Phthalate esters (PAEs), a class of refractory and toxic organic compounds, are becoming one of the most widespread contaminants in the environment. Degradation of PAEs in soil has been investigated, but limited to one or a few kinds of PAEs. Microorganisms could be regarded as a sensitive bio-indicator for soil contaminants. Therefore, four commonly used PAEs were chosen to investigate their degradation patterns and potential impacts on soil microbial activity with a series of bioassays. RESULT: PAEs in sterile soils changed slightly, while degradation of PAEs in non-sterile soil followed a single first-order kinetic. Higher concentrations of PAEs led to lower ,-glucosidase activity and higher protease activity, with smooth changes of phosphatase and urease activities. PAEs decreased average well color development (AWCD), while Shannon index (H) showed a tendency to increase after a decrease. Carbon utilization profile was affected significantly by PAEs, especially at 10 mg kg,1 soil. CONCLUSION: Degradation of PAEs was driven mainly by microbial mediated processes. PAEs affected carbon, nitrogen and phosphorus cycles variously, and had temporal effects on metabolic diversity, owing to the adaptation of microbes. Carbon substrates utilization changed from easily degradable sugars and carboxylic acids to recalcitrant compounds during the simulation. Copyright © 2010 Society of Chemical Industry [source] Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model,JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2008Margit von Lützow Abstract Based on recent findings in the literature, we developed a process-oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co-action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo-mineral interactions for OM stabilization in the passive pool is well-known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site- and horizon-specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo-mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo-mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool. [source] Sustainable soil remediation by refrigerated condensation at sites with "high-concentration" recalcitrant compounds and NAPL: Two case studiesREMEDIATION, Issue 1 2008Lowell Kessel Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous-phase liquids (NAPLs) can present significant technical and financial (long-term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off-gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off-gas treatment technology selection in this article allows for more in-depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic-compression and condensation combined with regenerative adsorption (C3,Technology). Of particular challenge to the off-gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off-gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off-gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off-gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off-gas treatment technologies and a region-specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3,Technology. © 2008 Wiley Periodicals, Inc. [source] Recombinant bacteria for environmental release: what went wrong and what we have learnt from itCLINICAL MICROBIOLOGY AND INFECTION, Issue 2009V. De Lorenzo Abstract From a biotechnological point of view, bacteria can be seen as either pathogens to target with new drugs or as biocatalysts for large-scale processes in industry, agriculture or the environment. The last includes the exploitation of bacterial activities for bioremediation of toxic waste either in situ or ex situ. The onset of genetic engineering in the late 70s opened the possibility of tailoring recombinant bacteria for environmental release, aimed at biodegradation of otherwise recalcitrant chemicals. However, a few decades later the outcome of this prospect has been quite meager. The literature counts very few cases where the use of genetically engineered bacteria has been proven to be more efficient than natural microorganisms in elimination of recalcitrant compounds under natural (not laboratory) conditions. Fortunately, the emergence of Systems and Synthetic Biology in the last few years is helping to identify what were the caveats of the former approaches and how to correct them. In addition, robust design concepts imported from process engineering provides fresh approaches to the challenge of designing microorganisms á la carte for environmental applications. [source] |