Home About us Contact | |||
Real-time Polymerase Chain Reaction (real-time + polymerase_chain_reaction)
Kinds of Real-time Polymerase Chain Reaction Terms modified by Real-time Polymerase Chain Reaction Selected AbstractsReal-Time Polymerase Chain Reaction: A Novel Molecular Diagnostic Tool for Equine Infectious DiseasesJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2006N. Pusterla The focus of rapid diagnosis of infectious disease of horses in the last decade has shifted from the conventional laboratory techniques of antigen detection, microscopy, and culture to molecular diagnosis of infectious agents. Equine practitioners must be able to interpret the use, limitations, and results of molecular diagnostic techniques, as they are increasingly integrated into routine microbiology laboratory protocols. Polymerase chain reaction (PCR) is the best-known and most successfully implemented diagnostic molecular technology to date. It can detect slow-growing, difficult-to-cultivate, or uncultivatable microorganisms and can be used in situations in which clinical microbiology diagnostic procedures are inadequate, time-consuming, difficult, expensive, or hazardous to laboratory staff. Inherent technical limitations of PCR are present, but they are reduced in laboratories that use standardized protocols, conduct rigid validation protocols, and adhere to appropriate quality-control procedures. Improvements in PCR, especially probe-based real-time PCR, have broadened its diagnostic capabilities in clinical infectious diseases to complement and even surpass traditional methods in some situations. Furthermore, real-time PCR is capable of quantitation, allowing discrimination of clinically relevant infections characterized by pathogen replication and high pathogen loads from chronic latent infections. Automation of all components of PCR is now possible, which will decrease the risk of generating false-positive results due to contamination. The novel real-time PCR strategy and clinical applications in equine infectious diseases will be the subject of this review. [source] Real-time Polymerase Chain Reaction to Follow the Response of Muscle to TrainingARTIFICIAL ORGANS, Issue 8 2008Lauren M. Moore Abstract:, The adaptive response of muscle to changes in activity or loading can take many weeks. Changes in the levels of RNA within a muscle fiber can give an early indication of the nature of the response of that fiber to changes in activity or loading. We have designed a new primer set for quantitative polymerase chain reaction (PCR) that will allow us to follow these early transcriptional changes in rat muscle, and have shown that analysis can be performed by standard techniques on as little as 5 mg of muscle, an amount that can be obtained by needle biopsy. [source] Expression of Osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitroEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2008Yanhong Zhao Osterix (Osx) is an osteoblast-specific transcription factor required for the differentiation of pre-osteoblasts into functional osteoblasts. This study sought to examine the changes of Osx expression in periodontal ligament cells (PDLC) subjected to mechanical force, and to investigate whether Osx is involved in the mechanical stress-induced differentiation of PDLC. Human PDLC were exposed to centrifugal force for 1,12 h. Real-time polymerase chain reaction (PCR), western blot, and immunofluorescence assays were used to examine the mRNA and protein expression of Osx and its subcellular localization. Furthermore, PDLC were transfected with the expression vector pcDNA3.1 flag-Osx and subjected to mechanical force for 6 h. The changes in alkaline phosphatase (ALP) activity and in the expression of core-binding factor alpha1 (Cbfa1), ALP, osteopontin, bone sialoprotein, osteocalcin, and collagen I were measured. After the application of mechanical force, Osx was upregulated in a time-dependent manner at both mRNA and protein levels, and Osx protein was translocated from the cytosol into the cell nuclei. Overexpression of Osx did not affect the expression of Cbfa1, but it significantly enhanced the ALP activity and the mRNA expression of all the aforementioned osteogenic marker genes, all of which increased further under mechanical stress. These results suggest that Osx might play an important role in the mechanical stress-induced osteogenic differentiation of PDLC and therefore be involved in alveolar bone remodeling during orthodontic therapy. [source] Fluoride down-regulates the expression of matrix metalloproteinase-20 in human fetal tooth ameloblast-lineage cells in vitroEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2006Yan Zhang Fluoride is associated with a decrease in the incidence of dental caries, but excessive fluoride intake during tooth enamel formation can result in enamel fluorosis. Fluorosed enamel has increased porosity, which has been related to a delay in the removal of amelogenin proteins as the enamel matures. This delay in protein removal suggests that fluoride may affect either the amount or the activity of enamel matrix proteinases. In this study, we investigated the role of fluoride in the synthesis and secretion of matrix metalloproteinase-20 (MMP-20), the proteinase primarily responsible for the initial hydrolysis of amelogenin during the secretory stage of enamel formation. Cultured human fetus tooth organ ameloblast-lineage cells were exposed to 10 µM fluoride and analyzed for synthesis of MMP-20. Immunoblotting showed that 10 µM NaF down-regulated the synthesis of MMP-20 by 21% compared with control cells, but did not alter the amount of amelogenin or kalikrein-4 (KLK-4) synthesized by the cells. Real-time polymerase chain reaction (PCR) showed that 10 µM NaF down-regulated MMP-20 mRNA expression to 28% of the levels found in the non-treated cells. These in vitro results suggest that fluoride can alter the expression of MMP-20 by ameloblasts, resulting in a disturbance of the balance between MMP-20 and its substrate that may contribute to the retention of amelogenins in the formation of fluorosed enamel. [source] Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubraGLOBAL CHANGE BIOLOGY, Issue 11 2007BARBARA DRIGO Abstract The increase in atmospheric carbon dioxide (CO2) levels is predicted to stimulate plant carbon (C) fixation, potentially influencing the size, structure and function of micro- and mesofaunal communities inhabiting the rhizosphere. To assess the effects of increased atmospheric CO2 on bacterial, fungal and nematode communities in the rhizosphere, Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown in three dune soils under controlled soil temperature and moisture conditions, while subjecting the aboveground compartment to defined atmospheric conditions differing in CO2 concentrations (350 and 700 ,L L,1). Real-time polymerase chain reaction (PCR) and PCR-denaturing gradient gel electrophoresis methods were used to examine effects on the size and structure of rhizosphere communities. Multivariate analysis of community profiles showed that bacteria were most affected by elevated CO2, and fungi and nematodes to a lesser extent. The influence of elevated CO2 was plant dependent, with the mycorrhizal plant (F. rubra) exerting a greater influence on bacterial and fungal communities. Biomarker data indicated that arbuscular mycorrhizal fungi (AMF) may play an important role in the observed soil community responses. Effects of elevated CO2 were also soil dependent, with greater influence observed in the more organic-rich soils, which also supported higher levels of AMF colonization. These results indicate that responses of soil-borne communities to elevated CO2 are different for bacteria, fungi and nematodes and dependent on the plant type and soil nutrient availability. [source] Modulation of Activation-Induced Cytidine Deaminase by Curcumin in Helicobacter pylori -Infected Gastric Epithelial CellsHELICOBACTER, Issue 6 2009Syed Faisal Haider Zaidi Abstract Background:, Anomalous expression of activation-induced cytidine deaminase (AID) in Helicobacter pylori -infected gastric epithelial cells has been postulated as one of the key mechanisms in the development of gastric cancer. AID is overexpressed in the cells through nuclear factor (NF)-,B activation by H. pylori and hence, inhibition of NF-,B pathway can downregulate the expression of AID. Curcumin, a spice-derived polyphenol, is known for its anti-inflammatory activity via NF-,B inhibition. Therefore, it was hypothesized that curcumin might suppress AID overexpression via NF-,B inhibitory activity in H. pylori -infected gastric epithelial cells. Materials and Methods:, MKN-28 or MKN-45 cells and H. pylori strain 193C isolated from gastric cancer patient were used for co-culture experiments. Cells were pretreated with or without nonbactericidal concentrations of curcumin. Apoptosis was determined by DNA fragmentation assay. Enzyme-linked immunosorbent assay was performed to evaluate the anti-adhesion activity of curcumin. Real-time polymerase chain reaction was employed to evaluate the expression of AID mRNA. Immunoblot assay was performed for the analysis of AID, NF-,B, inhibitors of NF-,B (I,B), and I,B kinase (IKK) complex regulation with or without curcumin. Results:, The adhesion of H. pylori to gastric epithelial cells was not inhibited by curcumin pretreatment at nonbactericidal concentrations (,10 ,mol/L). Pretreatment with nonbactericidal concentration of curcumin downregulated the expression of AID induced by H. pylori. Similarly, NF-,B activation inhibitor (SN-50) and proteasome inhibitor (MG-132) also downregulated the mRNA expression of AID. Moreover, curcumin (,10 ,mol/L) has suppressed H. pylori -induced NF-,B activation via inhibition of IKK activation and I,B degradation. Conclusion:, Nonbactericidal concentrations of curcumin downregulated H. pylori -induced AID expression in gastric epithelial cells, probably via the inhibition of NF-,B pathway. Hence, curcumin can be considered as a potential chemopreventive candidate against H. pylori -related gastric carcinogenesis. [source] A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor ,-chain promoterIMMUNOLOGY, Issue 1 2006Ulrich J. H. Sachs Summary The neonatal Fc receptor, FcRn, plays a central role in immunoglobulin G (IgG) transport across placental barriers. Genetic variations of FcRn-dependent transport across the placenta may influence antibody-mediated pathologies of the fetus and the newborn. Sequencing analysis of 20 unrelated individuals demonstrated no missense mutation within the five exons of the FcRn gene. However, a variable number of tandem repeats (VNTR) region within the FcRn promoter was observed, consisting of five different alleles (VNTR1,VNTR5). Alleles with two (VNTR2) and three (VNTR3) repeats were found to be most common in Caucasians (7·5 and 92·0%, respectively). Real-time polymerase chain reaction revealed that monocytes from VNTR3 homozygous individuals express 1·66-fold more FcRn transcript than do monocytes from VNTR2/VNTR3 heterozygous individuals (P = 0·002). In reporter plasmid assays, the VNTR3 allele supported the transcription of a reporter gene twice as effectively as did the VNTR2 allele (P = 0·003). Finally, under acidic conditions, monocytes from VNTR3 homozygous individuals showed an increased binding to polyvalent human IgG when compared with monocytes from VNTR2/VNTR3 heterozygous individuals (P = 0·021). These data indicate that a VNTR promoter polymorphism influences the expression of the FcRn receptor, leading to different IgG-binding capacities. [source] Response to soy: T-cell-like reactivity in the intestine of Atlantic salmon, Salmo salar L.JOURNAL OF FISH DISEASES, Issue 1 2007A M Bakke-McKellep Abstract T-cell-mediated hypersensitivity could be central in soybean meal (SBM)-induced intestinal changes in salmon. However, tools for immunohistochemical detection of T cells have been lacking in teleosts, including Atlantic salmon. Application of a specific histochemical protocol allowed demonstration of T-cell-like reactivities in formalin-fixed, paraffin-embedded tissues using an antibody reacting to a conserved region of human CD3, (Dako A0452). Characteristic staining was observed in cells of the thymus as well as distal intestine, skin, gills and spleen. These cells were negative for immunoglobulin M (IgM). Intestinal intraepithelial leucocytes were CD3, positive. During the SBM-induced enteropathy, the mixed inflammatory infiltrate in the lamina propria of the distal intestine included many lymphocytes with a T-cell-like reactivity. Real-time polymerase chain reaction revealed significantly increased expression of a complex polypeptide (CD3pp), CD4 and CD8, (P < 0.05) in the distal intestine of SBM-fed fish compared to fish meal-fed reference fish. Increased reactivity for extracellular IgM in the lamina propria and a positive material between the epithelial cells at the tips of the folds was observed, possibly due to leakage of IgM through an abrogated epithelial barrier. In conclusion, a T-cell-like response appears to be involved in this example of a food-sensitive enteropathy. [source] Impact of human coronavirus infections in otherwise healthy children who attended an emergency department,JOURNAL OF MEDICAL VIROLOGY, Issue 12 2006Susanna Esposito Abstract This prospective clinical and virological study of 2,060 otherwise healthy children aged <15 years of age (1,112 males; mean age,±,SD, 3.46,±,3.30 years) who attended the Emergency Department of Milan University's Institute of Pediatrics because of an acute disease excluding trauma during the winter season 2003,2004 was designed to compare the prevalence and clinical importance of human coronaviruses (HCoVs) in children. Real-time polymerase chain reaction (PCR) in nasopharyngeal aspirates revealed HCoV infection in 79 cases (3.8%): 33 HCoV-229E (1.6%), 13 HCoV-NL63 (0.6%), 11 HCoV-OC43 (0.5%), none HCoV-HKU1 genotype A, and 22 (1.1%) co-detections of a HCoV and another respiratory virus. The HCoVs were identified mainly in children with upper respiratory tract infection; there was no significant difference in clinical presentation between single HCoV infections and HCoV co-infections. Diagnostic methods were used in a limited number of patients, and the therapy prescribed and clinical outcomes were similar regardless of the viral strain. There were a few cases of other members of the households of HCoV-positive children falling ill during the 5,7 days following enrollment. These findings suggest that HCoV-229E and HCoV-OC43 have a limited clinical and socioeconomic impact on otherwise healthy children and their household contacts, and the HCoV-NL63 identified recently does not seem to be any different. The quantitative and qualitative role of HCoV-HKU1 genotype A is apparently very marginal. J. Med. Virol. 78:1609,1615, 2006. © 2006 Wiley-Liss, Inc. [source] Real-time polymerase chain reaction as a rapid and efficient alternative to estimation of picornavirus titers by tissue culture infectious dose 50% or plaque forming unitsMICROBIOLOGY AND IMMUNOLOGY, Issue 3 2009Nina Jonsson ABSTRACT Quantification of viral infectious units is traditionally measured by methods based on forming plaques in semisolid media (PFU) or endpoint dilution of a virus-containing solution (TCID50), methods that are laborious, time-consuming and take on average 3,7 days to carry out. Quantitative real-time PCR is an established method to quantify nucleic acids at high accuracy and reproducibility, routinely used for virus detection and identification. In the present study, a procedure was developed using a two-step real-time PCR and the SYBR Green detection method to study whether there are correlations between TCID50/ml, PFU/ml and Ct values generated by real-time PCR enabling rapid and efficient calculation of titer equivalents when working with viruses in the research laboratory. In addition, an external standard with known concentrations was included using in vitro transcribed viral RNA, thus allowing the calculation of the amount of RNA copies needed for various applications (i.e. per plaque or TCID50). The results show that there is a correlation between the three quantification methods covering a wide range of concentration of viruses. Furthermore, a general regression line between TCID50 and Ct values was obtained for all viruses included in the study, which enabled recording titer equivalents using real-time PCR. Finally, by including an external standard, the amount of RNA genomes generating one TCID50 or PFU for each enterovirus serotype included was determined. [source] Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plantsPLANT BIOTECHNOLOGY JOURNAL, Issue 6 2008Alessandra Barbante Summary The levels of accumulation of recombinant vaccines in transgenic plants are protein specific and strongly influenced by the subcellular compartment of destination. The human immunodeficiency virus protein Nef (negative factor), a promising target for the development of an antiviral vaccine, is a cytosolic protein that accumulates to low levels in transgenic tobacco and is even more unstable when introduced into the secretory pathway, probably because of folding defects in the non-cytosolic environment. To improve Nef accumulation, a new strategy was developed to anchor the molecule to the cytosolic face of the endoplasmic reticulum (ER) membrane. For this purpose, the Nef sequence was fused to the C-terminal domain of mammalian ER cytochrome b5, a long-lived, tail-anchored (TA) protein. This consistently increased Nef accumulation by more than threefold in many independent transgenic tobacco plants. Real-time polymerase chain reaction of mRNA levels and protein pulse-chase analysis indicated that the increase was not caused by higher transcript levels but by enhanced protein stability. Subcellular fractionation and immunocytochemistry indicated that Nef-TA accumulated on the ER membrane. Over-expression of mammalian or plant ER cytochrome b5 caused the formation of stacked membrane structures, as observed previously in similar experiments performed in mammalian cells; however, Nef-TA did not alter membrane organization in tobacco cells. Finally, Nef could be removed in vitro by its tail-anchor, taking advantage of an engineered thrombin cleavage site. These results open up the way to use tail-anchors to improve foreign protein stability in the plant cytosol without perturbing cellular functions. [source] Gene expression in distal intestine of Atlantic salmon (Salmo salar L.) fed genetically modified soybean mealAQUACULTURE NUTRITION, Issue 3 2008M.K. FRØYSTAD Abstract Limited availability of fishmeal leads to exploration of alternative protein sources like soybean meal (SBM). During the last decade, genetically modified (GM) plants have been introduced to the production of soybean crops. In the current experiment RNA was isolated from the distal intestinal section of Atlantic salmon fed either GM SBM or its near-isogenic parental line (non-GM), both at 30% inclusion. From a suppression subtractive hybridization cDNA library, 95 clones were sequenced. Clones with similarity to both known Atlantic salmon genes and novel Atlantic salmon sequences were identified. Real-time polymerase chain reaction was used to study differential expression of seven clones between the dietary groups. The clones were selected based on their relevance to intestinal immune responses and nutrient metabolism. Expression of a serum lectin-like clone was down-regulated in the GM group compared with the non-GM group. No differential expression was observed for six other clones with similarity to actin-related protein 2/3 complex-subunit 3, cysteine-rich intestinal protein, fatty acid binding protein/gastrotropin, ferritin heavy subunit, anterior gradient protein and peptide transporter. In conclusion, only minor differences in distal intestine transcriptional gene expression were observed between fish fed the diets with the non-GM and GM varieties. [source] Inhibitor of DNA binding/differentiation 2 induced by hypoxia promotes synovial fibroblast,dependent osteoclastogenesisARTHRITIS & RHEUMATISM, Issue 12 2009Mariola Kurowska-Stolarska Objective To map hypoxic areas in arthritic synovium and to establish the relevance of low oxygen levels to the phenotype of synovial fibroblasts, with special focus on bone degradation. Methods To analyze the distribution of hypoxia in arthritic joints, the hypoxia marker EF5 was administered to mice with collagen-induced arthritis (CIA). To evaluate the effect of hypoxia on rheumatoid arthritis synovial fibroblasts (RASFs), reverse suppression subtractive hybridization and complementary DNA array were used. Real-time polymerase chain reaction, Western blotting, and immunohistochemistry were used to evaluate the expression of inhibitor of DNA binding/differentiation 2 (ID-2). To investigate the function of ID-2 in RASFs, cells were transfected either with ID-2 vector or with ID-2,specific small interfering RNA. Results EF5 staining showed the presence of hypoxia in arthritic joints, particularly at sites of synovial invasion into bone. Differential expression analysis revealed that ID-2 was strongly induced by hypoxia in RASFs. Immunohistochemical analysis of CIA mouse synovium and human RA synovium showed a strong expression of ID-2 by RASFs at sites of synovial invasion into bone. Overexpression of ID-2 in RASFs significantly induced the expression of several factors promoting osteoclastogenesis. The biologic relevance of the potent osteoclastogenesis-promoting effects was shown by coculture assays of ID-2,overexpressing RASFs with bone marrow cells, leading to an increased differentiation of osteoclasts from bone marrow precursors. Conclusion The data show that hypoxic conditions are present at sites of inflammation and synovial invasion into bone in arthritic synovium. Hypoxia-induced ID-2 may contribute to joint destruction in RA patients by promoting synovial fibroblast,dependent osteoclastogenesis. [source] Regulation of plasminogen activator inhibitor 1 expression in human osteoarthritic chondrocytes by fluid shear stress: Role of protein kinase C,ARTHRITIS & RHEUMATISM, Issue 8 2009Chih-Chang Yeh Objective To test a fluid flow system for the investigation of the influence of shear stress on expression of plasminogen activator inhibitor 1 (PAI-1) in human osteoarthritic (OA) articular chondrocytes (from lesional and nonlesional sites) and human SW-1353 chondrocytes. Methods Human SW-1353 chondrocytes and OA and normal human articular chondrocytes were cultured on type II collagen,coated glass plates under static conditions or placed in a flow chamber to form a closed fluid-circulation system for exposure to different levels of shear stress (2,20 dyn/cm2). Real-time polymerase chain reaction was used to analyze PAI-1 gene expression, and protein kinase C (PKC) inhibitors and small interfering RNA were used to investigate the mechanism of shear stress,induced signal transduction in SW-1353 and OA (lesional and nonlesional) articular chondrocytes. Results There was a significant reduction in PAI-1 expression in OA chondrocytes obtained from lesional sites compared with those obtained from nonlesional sites. In SW-1353 chondrocytes subjected to 2 hours of shear flow, moderate shear stresses (5 and 10 dyn/cm2) generated significant PAI-1 expression, which was regulated through PKC, phosphorylation and Sp-1 activation. These levels of shear stress also increased PAI-1 expression in articular chondrocytes from nonlesional sites and from normal healthy cartilage through the activation of PKC, and Sp-1 signal transduction, but no effect of these levels of fluid shear stress was observed on OA chondrocytes from lesional sites. Conclusion OA chondrocytes from lesional sites and those from nonlesional sites of human cartilage have differential responses to shear stress with regard to PAI-1 gene expression, and therefore diverse functional consequences can be observed. [source] Changes in Gene Expression During the Formation of Bioengineered Heart MuscleARTIFICIAL ORGANS, Issue 1 2009Luda Khait Abstract A three-dimensional bioengineered heart muscle (BEHM) construct model had been previously developed, exhibiting contractile forces up to 800 µN. The interest of this study was to determine gene expression levels of biologic markers involved in calcium-handling between BEHM, cell monolayer, and neonatal heart. Cardiac cells were isolated from one litter of F344 rats and organized into groups (n = 5): 4-, 7-, 10-day BEHM and cell monolayer; BEHM was evaluated for cell viability and contractility. Groups were then analyzed for mRNA expression of calcium-handling proteins: myosin heavy chain (MHC) , and ,, Sarcoplasmic reticulum Ca++ ATPase (SERCA) 2, phospholamban (PBL), and ryanodine receptor. BEHM exhibited electrically stimulated active force (208 ± 12 µN day 4, 361 ± 22 µN day 7, and 344 ± 29 µN day 10) and no decrease in cell number. Real-time polymerase chain reaction (PCR) showed an increase in gene expression of all calcium-handling proteins in BEHM at 7 and 10 days compared with monolayers, for example, comparing BEHM to monolayer (7 and 10 days, respectively), MHC-,: 2600-fold increase and a 100-fold increase; MHC-,: 70-fold increase at 10 days; ryanodine receptor: 74-fold increase at 10 days; SERCA: 19-fold increase and sixfold increase; PBL: 158-fold increase and 24-fold increase. It was concluded that a three-dimensional environment is a better culturing condition of cardiac cells than a monolayer. Also, BEHM constructs demonstrated a high similarity to a native myocardium, and is, thus, a good starting foundation for engineered heart muscle. [source] Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinomaCANCER, Issue 10 2005Uche I. Ezeh M.D. Abstract BACKGROUND The seminoma class of testicular germ cell tumor (TGCT) are characterized by a morphological resemblance to primordial germ cells (PGCs) or gonocytes, and chromosome duplications at 12p. Recently, it was determined that human embryonic stem cells (hESCs) express genes in common with PGCs, and that three of these genes, GDF3, STELLAR, and NANOG, are located on 12p. The current study was designed to identify whether expression of these 12p genes were elevated in seminoma relative to normal testis, and to determine whether elevated expression was unique to seminoma. METHODS Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to assess gene expression in seminoma samples relative to normal testis and endpoint PCR was used to identify the presence or absence of these genes in breast carcinoma. RESULTS GDF3 expression was increased in eight of nine seminomas compared with normal testis, whereas NANOG, OCT4, or both were expressed at the highest levels in seminoma compared with all other markers analyzed. In addition, the NANOG protein was expressed in the majority of seminoma cells. The adult meiotic germ cell markers BOULE and TEKT1 were undetectable in seminoma, whereas the embryonic and adult germ cell markers DAZL and VASA were significantly reduced. Analysis of these markers in breast carcinoma and the MCF7 breast carcinoma cell line revealed that a core hESC-transcriptional profile could be identified consisting of OCT4, NANOG, STELLAR, and GDF3 and that NANOG protein could be detected in breast carcinoma. CONCLUSIONS These observations suggest that seminoma and breast carcinoma express a common stem cell profile and that the expression of DAZL and VASA in seminoma mark the germ cell origin of seminoma that is absent in breast carcinoma. Our findings suggest that stem cell genes may either play a direct role in different types of carcinoma progression or serve as valuable markers of tumorigenesis. Cancer 2005. © 2005 American Cancer Society. [source] Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancerCANCER SCIENCE, Issue 5 2009Kenji Tamura Prostate cancer is usually androgen-dependent and responds well to androgen ablation therapy based on castration. However, at a certain stage some prostate cancers eventually acquire a castration-resistant phenotype where they progress aggressively and show very poor response to any anticancer therapies. To characterize the molecular features of these clinical castration-resistant prostate cancers, we previously analyzed gene expression profiles by genome-wide cDNA microarrays combined with microdissection and found dozens of trans -activated genes in clinical castration-resistant prostate cancers. Among them, we report the identification of a new biomarker, stanniocalcin 2, as an overexpressed gene in castration-resistant prostate cancer cells. Real-time polymerase chain reaction and immunohistochemical analysis confirmed overexpression of stanniocalcin 2, a 302-amino-acid glycoprotein hormone, specifically in castration-resistant prostate cancer cells and aggressive castration-naïve prostate cancers with high Gleason scores (8,10). The gene was not expressed in normal prostate, nor in most indolent castration-naïve prostate cancers. Knockdown of stanniocalcin 2 expression by short interfering RNA in a prostate cancer cell line resulted in drastic attenuation of prostate cancer cell growth. Concordantly, stanniocalcin 2 overexpression in a prostate cancer cell line promoted prostate cancer cell growth, indicating its oncogenic property. These findings suggest that stanniocalcin 2 could be involved in aggressive phenotyping of prostate cancers, including castration-resistant prostate cancers, and that it should be a potential molecular target for development of new therapeutics and a diagnostic biomarker for aggressive prostate cancers. (Cancer Sci 2009; 100: 914,919) [source] PODOCYTE INJURY IS SUPPRESSED BY 1,25-DIHYDROXYVITAMIN D3 VIA MODULATION OF TRANSFORMING GROWTH FACTOR-,1/BONE MORPHOGENETIC PROTEIN-7 SIGNALLING IN PUROMYCIN AMINONUCLEOSIDE NEPHROPATHY RATSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2009Hou-Qin Xiao SUMMARY 1Accumulating evidence suggests that vitamin D and its analogues are renoprotective. However, the precise mechanisms and the molecular targets by which active vitamin D exerts its beneficial effects remain obscure. The objective of the present study was to evaluate the effect of active vitamin D on rats with puromycin aminonucleoside (PAN) nephropathy, a model that is characterized by predominant podocyte injury. 2The PAN nephropathy rats were created by a single intravenous injection of 100 mg/kg PAN. Changes in renal pathology and podocyte numbers were observed. Real-time polymerase chain reaction (PCR) was performed to examine mRNA expression of nephrin, transforming growth factor (TGF)-,1 and bone morphogenetic protein (BMP)-7. Protein expression of nephrin, TGF-,1, BMP-7 and p-Smad2/3 and p-Smad1/5/8 was examined by immunofluorescence, immunohistochemistry and western blotting, respectively. Rats were treated with 1,25(OH)2D3 by gastric gavage at a dose of 2.5 µg/kg per day, starting 2 days before PAN injection and continuing throughout the experiment. 3A single injection of PAN induced massive proteinuria and elevated serum creatinine on Day 7, both of which were significantly suppressed by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Immunofluorescence and real-time PCR of the podocyte-associated protein nephrin revealed reduced and discontinuous staining and this change was reversed by 1,25(OH)2D3. In PAN nephropathy rats, TGF-,1 and p-Smad2/3 expression was upregulated, whereas that of BMP-7 and p-Smad1/5/8 was downregulated. Treatment with 1,25(OH)2D3 significantly restored BMP-7/Smad signalling while suppressing TGF-,1/Smad signalling. 4In conclusion, 1,25(OH)2D3 can ameliorate podocyte damage and proteinuria induced by PAN. The beneficial effects of 1,25(OH)2D3 on podocytes may be attributable, in part, to direct modulation of TGF-,1/BMP-7 signalling. [source] Expression of Notch signalling-related genes in normal and differentiating rat dental pulp cellsAUSTRALIAN ENDODONTIC JOURNAL, Issue 2 2010Hantang Sun dds Abstract Notch signalling is of fundamental importance to various processes during embryonic development and in adults. The possible role of Hey1, an important Notch signalling component, in odontoblast differentiation was evaluated in this study. Primary cultured dental pulp cells, derived from upper incisors of 5-week-old Wistar rats, were placed in ,-modification of Eagle's minimal essential medium supplemented with 10% Fetal Bovine Serum (FBS), and ascorbic acid (AA) and ,-glycerophosphate (,-GP), with or without dexamethasone, and cultured on dishes coated with collagen type IA for 7 days. Conventional and real-time Polymerase Chain Reaction (PCR) was performed to determine the expression of Notch-related genes and dentin sialophosphoprotein as a marker of odontoblast differentiation. Dentin sialophosphoprotein and Hey1 expression was significantly increased and decreased in the presence of AA + ,-GP compared with controls, respectively. These findings suggest that Hey1 may be a negative regulator in odontoblast differentiation. [source] Regulatory T cells in Graves' diseaseCLINICAL ENDOCRINOLOGY, Issue 4 2009Deshun Pan Summary Context, Graves' disease (GD) involves auto-immunity against thyroid cell antigens, but the reasons for induction of auto-immunity are uncertain. We wished to determine whether there was a deficiency of regulatory T cells in patients with active GD. Design, Venous blood samples were obtained from patients with GD before and after treatment, and controls, and peripheral blood mononuclear cells were prepared. Patients and measurements, Regulatory T cells were enumerated by Fluorescent Activated Cell sorting (FACS) in nineteen patients with untreated GD, 9 patients 6,8 weeks post RAI therapy, and 30 control subjects. Twenty-one patients with active GD prior to control of hyperthyroidism, 23 euthyroid controls without known autoimmune thyroid disease, and 10 patients who were euthyroid 6,12 months after RAI treatment were studied for expression of genes found in regulatory T cells by real-time Polymerase Chain reaction (PCR). Results, Percent distribution of CD4+, CD4+CD25+ and CD4+ CD25+int-hi CD127+lo regulatory T cells was similar in active GD patients and control subjects. The number of CD25+ and CD4+ CD25+int-hi CD127+lo cells was similar in GD patients and control subjects, but was lower in recently treated patients. Messenger RNA was prepared from PBMC, and reverse transcribed. Copy DNA abundance was evaluated by Real Time PCR using appropriate primers, for GAPDH (glyceraldehyde phosphate dehydrogenase) as a control housekeeping gene, and 5 genes related to function of regulatory T cells. Message RNA for Gadd45 alpha, Gadd45beta (growth arrest and damage inducible proteins), GITR (glucocorticoid inducible TNF receptor) and CD25 (IL-2R subunit) was more abundant in patients with active GD than in normal controls, and FoxP3 mRNA level was equal to that in controls. Message RNA levels in patients treated and euthyroid for 6 months were also greater than or equal to values in controls. Conclusion, This study provides evidence that there is no deficit in T regulatory cells during active GD, or during the months post therapy. [source] Time course of changes in angiogenesis-related factors in denervated muscleACTA PHYSIOLOGICA, Issue 4 2006A. Wagatsuma Abstract Aim:, Denervation leads to capillary regression in skeletal muscle. To gain insight into the regulation of this process, we investigated the time course of changes in capillary supply and gene expression of angiogenesis-related factors during muscle denervation. Method:, Female mice underwent surgery to transect the sciatic nerve, and then the gastrocnemius muscles were isolated at 12 h, 1, 3, 5, 10, 20, or 30 days after surgery. The capillary supply was assessed by immunohistochemistry using anti-PECAM-1/CD31 antibody. The mRNA levels for angiogenesis-related factors were analysed using a real-time polymerase chain reaction. Results:, We found that the capillary-to-fibre ratio began to decrease 10 days after muscle denervation and decreased by 52% after 30 days. The levels of mRNA for vascular endothelial growth factor (VEGF), its receptors [fms-like tyrosine kinase (Flt-1) and a kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1)], angiopoietin-1 and angiopoietin-2 of denervated muscle were immediately down-regulated after 12 h and remained lower than control muscle until 30 days after muscle denervation. The levels of mRNA for the VEGF receptor, neuropilin-1, angiopoietin receptor and Tie-2 decreased within 12,24 h, but returned to near those of control muscle after 10,20 days, and again decreased after 30 days. Conclusions:, These findings suggest that denervation-induced capillary regression may be associated with down-regulation of VEGF and angiopoietin signalling. [source] Plasma renin in mice with one or two renin genesACTA PHYSIOLOGICA, Issue 4 2004P. B. Hansen Abstract Aim:, In the present study we have investigated whether the presence of a second renin gene exerts an overriding influence on plasma renin such that mice with two renin genes have consistently higher renin levels than mice with only one renin gene. Methods:, Plasma renin was determined as the rate of angiotensin I generation using a radioimmunoassay (RIA) kit with (plasma renin concentration, PRC) or without (plasma renin activity, PRA) the addition of purified rat angiotensinogen as substrate. Results:, In male 129SvJ, DBA/2 and Swiss Webster mice, strains possessing both Ren-1 and Ren-2, PRC (ng Ang I mL,1 h,1) averaged 178 ± 36, 563 ± 57 and 550 ± 43 while PRA was 2.9 ± 0.5, 3.6 ± 0.8 and 7.8 ± 1.2. In male C57BL/6, C3H and BALB/c mice that express only Ren-1, PRC averaged 426 ± 133, 917 ± 105 and 315 ± 72, and PRA was 3.4 ± 1.0, 6.9 ± 1.7 and 4.5 ± 1.2. In the two renin gene A1AR,/, mice compared with the one renin gene A1AR+/+, PRC averaged 538 ± 321 and 415 ± 159 while PRA averaged 3.2 ± 1.1 and 4.4 ± 1.4 ng Ang I mL,1 h,1. Aldosterone levels showed no significant differences between one renin (C57BL/6, C3H and BALB/c) and two renin (129SvJ, DBA/2 and Swiss Webster) gene mice. Furthermore, by quantitative real-time polymerase chain reaction (RT-PCR) we found no correlation between the number of renin genes and whole kidney renin mRNA levels from one and two renin gene mice. Conclusion:, Our data show that baseline plasma renin is not systematically higher in mice with two renin genes than in one renin gene mice. Thus, the presence of a second renin gene does not seem to be a major determinant of differences in PRC between different mouse strains. [source] Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cellsDEVELOPMENTAL DYNAMICS, Issue 2 2008Latasha C. Redmond Abstract Little is known about the genes that control the embryonic erythroid program. Laser capture microdissection was used to isolate primitive erythroid precursors and epithelial cells from frozen sections of the embryonic day 9.5 yolk sac. The RNA samples were amplified and labeled for hybridization to Affymetrix GeneChip Mouse Genome 430A 2.0 arrays. Ninety-one genes are expressed significantly higher in erythroid than in epithelial cells. Ingenuity pathway analysis indicates that many of these erythroid-enriched genes cluster in highly significant biological networks. One of these networks contains RBTN2/LMO2, SCL/TAL1, and EKLF/KLF1, three of the very few genes required for primitive erythropoiesis. Quantitative real-time polymerase chain reaction was used to verify that platelet factor 4, reelin, thrombospondin - 1, and muscleblind - like 1 mRNA is erythroid-enriched. These genes have established roles in development or differentiation in other systems, and are, therefore, good candidates for regulating primitive erythropoiesis. These results provide a catalog of genes expressed during primitive erythropoiesis. Developmental Dynamics 237:436,446, 2008. © 2008 Wiley-Liss, Inc. [source] Genes involved in the RNA interference pathway are differentially expressed during sea urchin developmentDEVELOPMENTAL DYNAMICS, Issue 11 2007Jia L. Song Abstract RNA-mediated interference (RNAi) is a conserved gene silencing mechanism that involves double-stranded RNA as a signal to trigger the sequence-specific degradation of target mRNA, resulting in posttranscriptional silencing and/or translational repression. Bioinformatic searches in the sea urchin genome database identified homologs of Drosha, DGCR5, Dicer, TRBP, Exportin-5, and Argonautes. Quantitative, real-time polymerase chain reaction indicated that all mRNA accumulate in eggs and in variable levels throughout early development. Whole-mount in situ RNA hybridization showed that all of the important players of the RNAi silencing pathway have abundant mRNA accumulation in oocytes and eggs, but have distinct spatial and temporal expression patterns throughout development. Sequence analysis revealed that each of the four Argonautes examined contain conserved residues important for RNAseH activity within the Piwi domain. This study elucidated that genes involved in the RNAi silencing pathway have dynamic expression and, thus, may have regulatory roles during germ cell development and embryogenesis. Developmental Dynamics 236:3180,3190, 2007. © 2007 Wiley-Liss, Inc. [source] Acetyl-CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2009Sebastian Kreuz Abstract Background Acetyl-CoA carboxylases (ACC) 1 and 2 are central enzymes in lipid metabolism. To further investigate their relevance for the development of obesity and type 2 diabetes, expression of both ACC isoforms was analyzed in obese fa/fa Zucker fatty and Zucker diabetic fatty rats at different ages in comparison to Zucker lean controls. Methods ACC1 and ACC2 transcript levels were measured by quantitative real-time polymerase chain reaction in metabolically relevant tissues of Zucker fatty, Zucker diabetic fatty and Zucker lean control animals. Quantitative real-time polymerase chain reaction was also applied to measure ACC tissue distribution in human tissues. For confirmation on a protein level, quantitative mass spectrometry was used. Results Disease-related transcriptional changes of both ACC isoforms were observed in various tissues of Zucker fatty and Zucker diabetic fatty rats including liver, pancreas and muscle. Changes were most prominent in oxidative tissues of diabetic rats, where ACC2 was significantly increased and ACC1 was reduced compared with Zucker lean control animals. A comparison of the overall tissue distribution of both ACC isoforms in humans and rats surprisingly revealed strong differences. While in rats ACC1 was mainly expressed in lipogenic and ACC2 in oxidative tissues, ACC2 was predominant in oxidative and lipogenic tissues in humans. Conclusion Our data support a potential role for both ACC isoforms in the development of obesity and diabetes in rats. However, the finding of fundamental species differences in ACC1 and ACC2 tissue expression might be indicative for different functions of both isoforms in humans and rats and raises the question to which degree these models are predictive for the physiology and pathophysiology of lipid metabolism in humans. Copyright © 2009 John Wiley & Sons, Ltd. [source] Simultaneous cytological diagnosis of herpes simplex virus infection and primary lung cancer: Report of two casesDIAGNOSTIC CYTOPATHOLOGY, Issue 11 2008Nicoletta Maounis M.D., Ph.D. Abstract Herpes simplex is an uncommon cause of lower respiratory tract infection that requires prompt diagnosis and treatment to prevent late complications. We report two cases with simultaneous herpes simplex virus infection of the lower respiratory tract and lung carcinoma. Cytology of bronchial brushing and washing fluids and postbronchoscopic sputum established the diagnosis, which was further corroborated by real-time polymerase chain reaction. Diagn. Cytopathol. 2008;36:818,822. © 2008 Wiley-Liss, Inc. [source] Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loamENVIRONMENTAL MICROBIOLOGY, Issue 6 2008Ju-pei Shen Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities under different long-term (17 years) fertilization practices were investigated using real-time polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). A sandy loam with pH (H2O) ranging from 8.3 to 8.7 was sampled in years 2006 and 2007, including seven fertilization treatments of control without fertilizers (CK), those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): NP, NK, PK and NPK, half chemical fertilizers NPK plus half organic manure (1/2OMN) and organic manure (OM). The highest bacterial amoA gene copy numbers were found in those treatments receiving N fertilizer. The archaeal amoA gene copy numbers ranging from 1.54 × 107 to 4.25 × 107 per gram of dry soil were significantly higher than those of bacterial amoA genes, ranging from 1.24 × 105 to 2.79 × 106 per gram of dry soil, which indicated a potential role of AOA in nitrification. Ammonia-oxidizing bacteria abundance had significant correlations with soil pH and potential nitrification rates. Denaturing gradient gel electrophoresis patterns revealed that the fertilization resulted in an obvious change of the AOB community, while no significant change of the AOA community was observed among different treatments. Phylogenetic analysis showed a dominance of Nitrosospira -like sequences, while three bands were affiliated with the Nitrosomonas genus. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). These results suggest that long-term fertilization had a significant impact on AOB abundance and composition, while minimal on AOA in the alkaline soil. [source] The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxRENVIRONMENTAL MICROBIOLOGY, Issue 10 2007Tom Defoirdt Summary This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxRVh mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxRVh response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxRVh protein also showed less shifts with furanone-treated LuxRVh, whereas the LuxRVh concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxRVh unable to bind to the promoter sequences of quorum sensing-regulated genes. [source] Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practicesENVIRONMENTAL MICROBIOLOGY, Issue 9 2007Ji-zheng He Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H2O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira- like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. [source] Pulp and paper mill effluents induce distinct gene expression changes linked to androgenic and estrogenic responses in the fathead minnow (Pimephales promelas)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2010Julieta Werner Abstract Although effluent treatment systems within pulp and paper mills remove many toxicants and improve wastewater quality, there is a need to understand and quantify the effectiveness of the treatment process. At a combined news and kraft pulp and paper mill in northwestern Ontario, Canada, fathead minnow (FHM) reproduction and physiology were examined before, during, and after a short-term (6-d) exposure to 10% (v/v) untreated kraft mill effluent (UTK), 25% (v/v) secondary treated kraft mill effluent (TK), and 100% (v/v) combined mill outfall (CMO). Although UTK exposure significantly decreased egg production, neither TK nor CMO caused any reproductive changes. The expression of six genes responsive to endocrine-disrupting compounds, stress, or metals was then examined in livers of these fish using real-time polymerase chain reaction. In female FHMs, none of the three effluents induced significant expression changes in any genes investigated. By contrast, in males there were significant increases in the mRNA levels of androgen receptor, estrogen receptor (ER) ,, and cytochrome P4501A (CYP1A) upon UTK and TK exposure but no changes in ER, or vitellogenin (VTG) gene expression, whereas CMO exposure significantly increased the mRNA levels of ER,, VTG, and CYP1A. Together, these results suggest that kraft effluent before and after biological treatment contained compounds able to induce androgenic effects in FHMs, and that combination of kraft and newsmill effluents eliminated the androgenic compounds while inducing distinct and significant patterns of gene expression changes that were likely due to estrogenic compounds produced by the newsmill. Environ. Toxicol. Chem. 2010;29:430,439. © 2009 SETAC [source] |