Home About us Contact | |||
Reaction Velocity (reaction + velocity)
Selected AbstractsHuman cytochromes mediating gepirone biotransformation at low substrate concentrationsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 2 2003David J. Greenblatt Abstract Biotransformation of gepirone to 1-(2-pyrimidinyl)-piperazine (1-PP) and 3'-OH-gepirone, as well as two other hydroxylated metabolites, was studied in vitro using a human liver microsomal preparation and heterologously expressed human CYP3A4 and CYP2D6. The focus was on a low range of gepirone concentrations (1000 nM and below). Liver microsomes formed 1-PP and 3'-OH-gepirone with similar reaction velocities. Two other hydroxylated metabolites (2-OH- and 5-OH-gepirone) were also formed, but pure reference standards were not available for purposes of quantitative analysis. The CYP3A inhibitor ketoconazole completely eliminated 1-PP formation, reduced 3'-OH-gepirone formation to less than 20% of control, and reduced 2-OH-gepirone formation to 7% of control. All metabolites were formed by expressed CYP3A4; however, CYP2D6 formed 3'-OH- and 5-OH-gepirone, but not 1-PP or 2-OH-gepirone. Based on estimated relative abundances of the two isoforms in human liver, CYP3A4 was predicted to account for more than 95% of net clearance of gepirone in vivo at low concentrations approaching the therapeutic range. CYP2D6 would account for less than 5% of net clearance. The findings are consistent with previous in vitro studies of gepirone using higher substrate concentrations. Copyright © 2003 John Wiley & Sons, Ltd. [source] Cocatalysis by ruthenium(III) in hydrogen ions catalyzed oxidation of iodide ions: A kinetic studyINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 10 2004Praveen K. Tandon RuCl3 further catalyzes the oxidation of iodide ion by K3Fe(CN)6, already catalyzed by hydrogen ions. The rate of reaction, when catalyzed only by hydrogen ions, was separated graphically from the rate when both Ru(III) and H+ ions catalyzed the reaction. Reactions studied separately in the presence as well as absence of RuCl3 under similar conditions were found to follow second-order kinetics with respect to [I,], while the rate showed direct proportionality with respect to [Fe(CN)6]3,, [RuCl3], and [H+]. External addition of [Fe(CN)6]4, ions retards the reaction velocity, while changing the ionic strength of the medium has no effect on the rate. With the help of the intercept of the catalyst graph, the extent of the reaction that takes place without adding Ru(III) was calculated and it was in accordance with the values obtained from the reaction in which only H+ ions catalyzed the reaction. It is proposed that ruthenium forms a complex, which slowly disproportionates into the rate-determining step. Arrhenius parameters at four different temperatures were also calculated. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 545,553, 2004 [source] Rapid, sensitive and simple detection method for koi herpesvirus using loop-mediated isothermal amplificationMICROBIOLOGY AND IMMUNOLOGY, Issue 7 2009Manabu Yoshino ABSTRACT New methods were developed for the detection of koi herpesvirus (KHV, CyHV-3) by LAMP, which were compared with the PCR for specificity and sensitivity. We designed two primer sets targeting a specific sequence within the 9/5 PCR amplicon (9/5 LAMP) and the upper region of the SphI-5 PCR amplicon (SphI-5 LAMP), including a sequence highly conserved among the strains. The amplification was monitored in real-time based on the increase in turbidity, with magnesium pyrophosphate as the by-product. The reactions were carried out under isothermal conditions at 65°C for 60 min. The detection limit of both LAMP was six copies, equal to the modified SphI-5 PCR. No cross-reactivity with other fish pathogenic viruses and bacteria was observed. SphI-5 LAMP was found to have a quicker response in terms of the reaction velocity than 9/5 LAMP. Therefore, we consider SphI-5 LAMP to be superior for routine use. Additionally, LAMP was found applicable to crude extract from gills and other organs. LAMP methods are superior in terms of sensitivity, specificity, rapidity and simplicity, and are potentially a valuable diagnostic tool for KHV infections. [source] Cloning of deoxynucleoside monophosphate kinase genes and biosynthesis of deoxynucleoside diphosphatesBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006Jie Bao Abstract The genes encoding four deoxynucleoside monophosphate kinase (dNMP kinase) enzymes, including ADK1 for deoxyadenylate monophosphate kinase (AK), GUK1 for deoxyguanylate monophosphate kinase (GK), URA6 for deoxycytidylate monophosphate kinase (CK), and CDC8 for deoxythymidylate monophosphate kinase (TK), were isolated from the genome of Saccharomyces cerevisiae ATCC 2610 strain and cloned into E. coli strain BL21(DE3). Four recombinant plasmids, pET17b-JB1 containing ADK1, pET17b-JB2 containing GUK1, pET17b-JB3 containing URA6, and pET17b-JB4 containing CDC8, were constructed and transformed into E. coli strain for over-expression of AK, GK, CK, and TK. The amino acid sequences of these enzymes were analyzed and a putative conserved peptide sequence for the ATP active site was proposed. The four deoxynucleoside diphosphates (dNDP) including deoxyadenosine diphosphate (dADP), deoxyguanosine diphosphate (dGDP), deoxycytidine diphosphate (dCDP), and deoxythymidine diphosphate (dTDP), were synthesized from the corresponding deoxynucleoside monophosphates (dNMP) using the purified AK, GK, CK, and TK, respectively. The effects of pH and magnesium ion concentration on the dNDP biosynthesis were found to be important. A kinetic model for the synthetic reactions of dNDP was developed based on the Bi,Bi random rapid equilibrium mechanism. The kinetic parameters including the maximum reaction velocity and Michaelis,Menten constants were experimentally determined. The study on dNDP biosynthesis reported in this article are important to the proposed bioprocess for production of deoxynucleoside triphosphates (dNTP) that are used as precursors for in vitro DNA synthesis. There is a significant advantage of using enzymatic biosyntheses of dNDP as compared to the chemical method that has been in commercial use. © 2005 Wiley Periodicals, inc. [source] Biosynthesis reaction mechanism and kinetics of deoxynucleoside triphosphates, dATP and dGTPBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005Jie Bao Abstract The enzyme reaction mechanism and kinetics for biosyntheses of deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) from the corresponding deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP) catalyzed by pyruvate kinase were studied. A kinetic model for this synthetic reaction was developed based on a Bi-Bi random rapid equilibrium mechanism. Kinetic constants involved in this pyruvate kinase catalyzed phosphorylation reactions of deoxynucleoside diphosphates including the maximum reaction velocity, Michaelis-Menten constants, and inhibition constants for dATP and dGTP biosyntheses were experimentally determined. These kinetic constants for dATP and dGTP biosyntheses are of the same order of magnitude but significantly different between the two reactions. Kinetic constants involved in ATP and GTP biosyntheses as reported in literature are about one order of magnitude different from those involved in dATP and dGTP biosyntheses. This enzyme reaction requires Mg2+ ion and the optimal Mg2+ concentration was also determined. The experimental results showed a very good agreement with the simulation results obtained from the kinetic model developed. This kinetic model can be applied to the practical application of a pyruvate kinase reaction system for production of dATP and dGTP. There is a significant advantage of using enzymatic biosyntheses of dATP and dGTP as compared to the chemical method that has been in commercial use. © 2005 Wiley Periodicals, Inc. [source] |