Reaction Norms (reaction + norm)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


THE REACTION NORM FOR ABDOMINAL PIGMENTATION AND ITS CURVE IN DROSOPHILA MEDIOPUNCTATA DEPEND ON THE MEAN PHENOTYPIC VALUE

EVOLUTION, Issue 1 2009
Felipe Rocha
The idea of a general independence between the phenotypic plasticity and the mean value of a trait is, presently, a consensus. Here, we use the reaction norm of abdominal pigmentation (number of dark spots) of Drosophila mediopunctata in response to temperature, to test this idea. We raised eight strains, bearing two different chromosomal inversions and with varying mean phenotypic values, under 11 temperatures in a thermal gradient to test for predictions concerning mean phenotypic values, chromosomal inversions, and reaction norms. Our results revealed a strong effect of different phenotypic groups and no effect of different karyotypes on reaction norms. Moreover, we found a significant negative correlation between mean phenotypic value and the curvature of the reaction norms, revealing a high dependency of the reaction norm shape on mean phenotypic value. These results clearly reject the idea of genetic independence between mean value and phenotypic plasticity, and may indicate a pattern of correlation, which may include results from other traits and species, with an importance that has not been fully appreciated. [source]


MEASURING PROBABILISTIC REACTION NORMS FOR AGE AND SIZE AT MATURATION

EVOLUTION, Issue 4 2002
Mikko Heino
Abstract We present a new probabilistic concept of reaction norms for age and size at maturation that is applicable when observations are carried out at discrete time intervals. This approach can also be used to estimate reaction norms for age and size at metamorphosis or at other ontogenetic transitions. Such estimations are critical for understanding phenotypic plasticity and life-history changes in variable environments, assessing genetic changes in the presence of phenotypic plasticity, and calibrating size- and age-structured population models. We show that previous approaches to this problem, based on regressing size against age at maturation, give results that are systematically biased when compared to the probabilistic reaction norms. The bias can be substantial and is likely to lead to qualitatively incorrect conclusions; it is caused by failing to account for the probabilistic nature of the maturation process. We explain why, instead, robust estimations of maturation reaction norms should be based on logistic regression or on other statistical models that treat the probability of maturing as a dependent variable. We demonstrate the utility of our approach with two examples. First, the analysis of data generated for a known reaction norm highlights some crucial limitations of previous approaches. Second, application to the northeast arctic cod (Gadus morhua) illustrates how our approach can be used to shed new light on existing real-world data. [source]


QUANTITATIVE GENETICS OF SEXUAL PLASTICITY: THE ENVIRONMENTAL THRESHOLD MODEL AND GENOTYPE-BY-ENVIRONMENT INTERACTION FOR PHALLUS DEVELOPMENT IN THE SNAIL BULINUS TRUNCATUS

EVOLUTION, Issue 5 2000
Marie-France Ostrowski
Abstract Sexual polymorphisms are model systems for analyzing the evolution of reproductive strategies. However, their plasticity and other binary traits have rarely been studied, with respect to environmental variables. A possible reason is that, although threshold models offer an adequate quantitative genetics framework for binary traits in a single environment, analyzing their plasticity requires more refined empirical and theoretical approaches. The statistical framework proposed here, based on the environmental threshold model (ETM), should partially fill this gap. This methodology is applied to an empirical dataset on a plastic sexual polymorphism, aphally, in the snail Bulinus truncatus. Aphally is characterized by the co-occurrence of regular hermaphrodites (euphallics) together with hermaphrodites deprived of the male copulatory organ (aphallics). Reaction norms were determined for 40 inbred lines, distributed at three temperatures, in a first experiment. A second experiment allowed us to rule out maternal effects. We confirmed the existence of high broad-sense heritabilities as well as a positive effect of high temperatures on aphally. However a significant genotype-by-environment interaction was detected for the first time, suggesting that sexual plasticity itself can respond to selection. A nested series of four ETM-like models was developed for estimating genetical effects on both mean aphally rate and plasticity. These models were tested using a maximum-likelihood procedure and fitted to aphally data. Although no perfect fit of models to data was observed, the refined versions of ETM models conveniently reduce the analysis of complex reaction norms of binary traits into standard quantitative genetics parameters, such as genetic values and environmental variances. [source]


Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and nonmetalliferous sites

NEW PHYTOLOGIST, Issue 1 2007
Caroline Dechamps
Summary ,,We examined phenotypic plasticity of fitness components in response to zinc (Zn) in the Zn hyperaccumulator, Thlaspi caerulescens. ,,Two populations from Zn-enriched soils (M) and two populations from normal soils (NM) were grown in pots at three Zn concentrations (0, 1000 and 8000 mg kg,1 Zn), for an entire life cycle. Growth, Zn accumulation and fitness components were assessed. ,,Based on vegetative growth, M and NM populations had similar Zn tolerance at 1000 mg kg,1 Zn. However, reproductive output was markedly decreased in NM at 1000 and 8000 mg kg,1 Zn. In M populations, Zn did not affect fitness. However, low Zn status enhanced reproductive output in year 1 compared with year 2 and decreased survival after the first flowering season. ,,M populations are able to achieve equal fitness across a broad range of Zn concentrations in soil by different combinations of fecundity and longevity. No cost of higher tolerance was demonstrated in M populations. Reproductive traits appeared to be a more sensitive indicator of tolerance than vegetative growth. [source]


THE REACTION NORM FOR ABDOMINAL PIGMENTATION AND ITS CURVE IN DROSOPHILA MEDIOPUNCTATA DEPEND ON THE MEAN PHENOTYPIC VALUE

EVOLUTION, Issue 1 2009
Felipe Rocha
The idea of a general independence between the phenotypic plasticity and the mean value of a trait is, presently, a consensus. Here, we use the reaction norm of abdominal pigmentation (number of dark spots) of Drosophila mediopunctata in response to temperature, to test this idea. We raised eight strains, bearing two different chromosomal inversions and with varying mean phenotypic values, under 11 temperatures in a thermal gradient to test for predictions concerning mean phenotypic values, chromosomal inversions, and reaction norms. Our results revealed a strong effect of different phenotypic groups and no effect of different karyotypes on reaction norms. Moreover, we found a significant negative correlation between mean phenotypic value and the curvature of the reaction norms, revealing a high dependency of the reaction norm shape on mean phenotypic value. These results clearly reject the idea of genetic independence between mean value and phenotypic plasticity, and may indicate a pattern of correlation, which may include results from other traits and species, with an importance that has not been fully appreciated. [source]


PATTERNS OF PHENOTYPIC AND GENETIC VARIATION FOR THE PLASTICITY OF DIAPAUSE INCIDENCE

EVOLUTION, Issue 7 2007
Wade E. Winterhalter
Phenotypic plasticity describes an organism's ability to produce multiple phenotypes in direct response to its environmental conditions. Over the past 15 years empiricists have found that this plasticity frequently exhibits geographic variation and often possesses a significant heritable genetic basis. However, few studies have examined both of these aspects of plasticity simultaneously. Here, we examined both the geographic and genetic variations of the plasticity for diapause incidence (the proportion of eggs that enter an arrested state of development capable of surviving over the winter) relative to temperatures and photoperiods associated with long and short season environments across six populations of the striped ground cricket, Allonemobius socius, using a half-sibling split brood quantitative genetic design. We found that plasticity, as measured by the slope of the reaction norm, was greater in the southern-low altitude region (where populations are bivoltine) relative to the southern-high and northern-low altitude regions (where populations are univoltine). However, the heritability of plasticity was only significantly different from zero in univoltine populations that experienced "intermediate" natal season lengths. These patterns suggest that selection may favor the plasticity of diapause incidence in bivoltine regions, but act against plasticity in regions in which populations are univoltine. Furthermore, our data suggest that under "intermediate" natal season length conditions, the interplay between local adaptation and gene flow may keep the plasticity of diapause incidence low (but still significant) while maintaining its genetic variation. As such, this study not only provides a novel observation into the geographic variation of phenotypic plasticity, but also provides much needed groundwork for tests of its adaptive significance. [source]


THE PHENOTYPIC VARIANCE WITHIN PLASTIC TRAITS UNDER MIGRATION-MUTATION-SELECTION BALANCE

EVOLUTION, Issue 6 2006
Xu-Sheng Zhang
Abstract How phenotypic variances of quantitative traits are influenced by the heterogeneity in environment is an important problem in evolutionary biology. In this study, both genetic and environmental variances in a plastic trait under migration-mutation-stabilizing selection are investigated. For this, a linear reaction norm is used to approximate the mapping from genotype to phenotype, and a population of clonal inheritance is assumed to live in a habitat consisting of many patches in which environmental conditions vary among patches and generations. The life cycle is assumed to be selection-reproduction-mutation-migration. Analysis shows that phenotypic plasticity is adaptive if correlations between the optimal phenotype and environment have become established in both space and/or time, and it is thus possible to maintain environmental variance (VE) in the plastic trait. Under the special situation of no mutation but maximum migration such that separate patches form an effective single-site habitat, the genotype that maximizes the geometric mean fitness will come to fixation and thus genetic variance (VG) cannot be maintained. With mutation and/or restricted migration, VG can be maintained and it increases with mutation rate but decreases with migration rate; whereas VE is little affected by them. Temporal variation in environmental quality increases VG while its spatial variance decreases VG. Variation in environmental conditions may decrease the environmental variance in the plastic trait. [source]


THE EVOLUTION OF ENVIRONMENTAL AND GENETIC SEX DETERMINATION IN FLUCTUATING ENVIRONMENTS

EVOLUTION, Issue 12 2003
Tom J. M. Van Dooren
Abstract Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination. [source]


MEASURING PROBABILISTIC REACTION NORMS FOR AGE AND SIZE AT MATURATION

EVOLUTION, Issue 4 2002
Mikko Heino
Abstract We present a new probabilistic concept of reaction norms for age and size at maturation that is applicable when observations are carried out at discrete time intervals. This approach can also be used to estimate reaction norms for age and size at metamorphosis or at other ontogenetic transitions. Such estimations are critical for understanding phenotypic plasticity and life-history changes in variable environments, assessing genetic changes in the presence of phenotypic plasticity, and calibrating size- and age-structured population models. We show that previous approaches to this problem, based on regressing size against age at maturation, give results that are systematically biased when compared to the probabilistic reaction norms. The bias can be substantial and is likely to lead to qualitatively incorrect conclusions; it is caused by failing to account for the probabilistic nature of the maturation process. We explain why, instead, robust estimations of maturation reaction norms should be based on logistic regression or on other statistical models that treat the probability of maturing as a dependent variable. We demonstrate the utility of our approach with two examples. First, the analysis of data generated for a known reaction norm highlights some crucial limitations of previous approaches. Second, application to the northeast arctic cod (Gadus morhua) illustrates how our approach can be used to shed new light on existing real-world data. [source]


Development and evolution of adaptive polyphenisms

EVOLUTION AND DEVELOPMENT, Issue 1 2003
H. Frederik Nijhout
SUMMARY Phenotypic plasticity is the primitive character state for most if not all traits. Insofar as developmental and physiological processes obey the laws of chemistry and physics, they will be sensitive to such environmental variables as temperature, nutrient supply, ionic environment, and the availability of various macro- and micronutrients. Depending on the effect this phenotypic plasticity has on fitness, evolution may proceed to select either for mechanisms that buffer or canalize the phenotype against relevant environmental variation or for a modified plastic response in which some ranges of the phenotypic variation are adaptive to particular environments. Phenotypic plasticity can be continuous, in which case it is called a reaction norm, or discontinuous, in which case it is called a polyphenism. Although the morphological discontinuity of some polyphenisms is produced by discrete developmental switches, most polyphenisms are due to discontinuities in the environment that induce only portions of what is in reality a continuous reaction norm. In insect polyphenisms, the environmental variable that induces the alternative phenotype is a token stimulus that serves as a predictor of, but is not itself, the environment to which the polyphenism is an adaptation. In all cases studied so far, the environmental stimulus alters the endocrine mechanism of metamorphosis by altering either the pattern of hormone secretion or the pattern of hormone sensitivity in different tissues. Such changes in the patterns of endocrine interactions result in the execution of alternative developmental pathways. The spatial and temporal compartmentalization of endocrine interactions has produced a developmental mechanism that enables substantial localized changes in morphology that remain well integrated into the structure and function of the organism. [source]


Metabolic cold adaptation and developmental plasticity in metabolic rates among species in the Fundulus notatus species complex

FUNCTIONAL ECOLOGY, Issue 5 2010
Jacob Schaefer
Summary 1.,In ectotherms, temperature and body size are the most influential and well studied variables affecting metabolic rate. Understanding mechanisms driving the evolution of metabolic rates is crucial to broader ecological theory. The metabolic cold adaptation hypothesis (MCA) makes predictions about the evolution of ectotherm metabolic rates and temperature-metabolic rate reaction norms. 2.,We examined intra and interspecific patterns in metabolic rate among populations in the Fundulus notatus species group (F. notatus, F. olivaceus and F. euryzonus). We ask if patterns of intra and interspecific variability in metabolic rate are consistent with the MCA and if metabolic rates in general are developmentally plastic. 3.,Support for the MCA was mixed among intra and interspecific tests. The northern population of F. olivaceus had increased metabolic rate and no difference in temperature sensitivity (slope of temperature-metabolic rate reaction norm). Northern populations of F. notatus had lower temperature sensitivity and no difference in overall metabolic rate. The southern coastal drainage endemic (F. euryzonus) had intermediate metabolic rates compared to southern populations of the other two more broadly distributed species. Metabolic rates were also developmentally plastic. Adults reared at warmer temperatures had lower metabolic rates after accounting for body size and temperature. 4.,Differences in thermal regimes explain some variability in metabolic rates among populations consistent with MCA. However, interspecific comparisons are not consistent with MCA and are likely influenced by species differences in ecology and life history strategies. [source]


Flexible responses of insects to changing environmental temperature , early season development of Craspedolepta species on fireweed

GLOBAL CHANGE BIOLOGY, Issue 7 2006
IAN D. HODKINSON
Abstract Developmental response to temperature during the critical early season growing period was investigated in two congeneric species of Craspedolepta feeding on Epilobium angustifolium at three sites at different altitudes in Norway and the UK. The larval development reaction norm to temperature, measured as accumulated day degrees, was not significantly different between Craspedolepta nebulosa and Craspedolepta subpunctata at sites where they co-occurred but C. nebulosa development was consistently more advanced at any site. For individual species the reaction norms at the lowest site (Ainsdale, UK) were similar to the intermediate site (Geilo, Norway): and there were no differences between years. Insect size remained relatively constant. However, at the highest site (Haugastøl, Norway), where C. subpunctata is unable to complete its development, the reaction norm for C. nebulosa was significantly higher than at Geilo and the individual insects produced were smaller. These adaptations allow life-history completion under limiting temperature conditions. An experiment at Ainsdale, to raise the mean temperature by around 2.5°C during the early growing season, resulted in accelerated development in both C. nebulosa and C. subpunctata but development in C. nebulosa was accelerated proportionately more. C. nebulosa thus displays the greater plasticity in developmental response to environmental temperature that allows it to occupy a greater altitudinal and latitudinal range than C. subpunctata, in which the response is less plastic and more canalized. The likely individualistic responses of the two species to climate warming are considered. [source]


Plastic changes in seed dispersal along ecological succession: theoretical predictions from an evolutionary model

JOURNAL OF ECOLOGY, Issue 2 2005
OPHÉLIE RONCE
Summary 1We use a deterministic model to explore theoretically the ecological and evolutionary relevance of plastic changes in seed dispersal along ecological succession. Our model describes the effect of changing disturbance regime, age structure, density and interspecific competition as the habitat matures, enabling us to seek the evolutionarily stable reaction norm for seed dispersal rate as a function of time elapsed since population foundation. 2Our model predicts that, in the context of ecological succession, selection should generally favour plastic strategies allowing plants to increase their dispersal rate with population age, contrary to previous predictions of models that have assumed genetically fixed dispersal strategies. 3More complex patterns can evolve showing periods with high production of dispersing seeds separated by periods of intense local recruitment. These patterns are due to the interaction of individual senescence with change in ecological conditions within sites. 4Evolution of plastic dispersal strategies affects the patterns of density variation with time since foundation and accelerates successional replacement. An interesting parallel can be drawn between the evolution of age-specific dispersal rates in successional systems and the evolution of senescence in age-structured populations. 5Seed dispersal plasticity could be a potential mechanism for habitat selection in plants and have implications for range expansion in invasive species because recently founded populations at the advancing front may show different patterns to those in the established range. [source]


Selection experiments and the study of phenotypic plasticity,

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2002
S. M. Scheiner
Abstract Laboratory selection experiments are powerful tools for establishing evolutionary potentials. Such experiments provide two types of information, knowledge about genetic architecture and insight into evolutionary dynamics. They can be roughly classified into two types: (1) artificial selection in which the experimenter selects on a focal trait or trait index, and (2) quasi-natural selection in which the experimenter establishes a set of environmental conditions and then allows the population to evolve. Both approaches have been used in the study of phenotypic plasticity. Artificial selection experiments have taken various forms including: selection directly on a reaction norm, selection on a trait in multiple environments, and selection on a trait in a single environment. In the latter experiments, evolution of phenotypic plasticity is investigated as a correlated response. Quasi-natural selection experiments have examined the effects of both spatial and temporal variation. I describe how to carry out such experiments, summarize past efforts, and suggest further avenues of research. [source]


The evolutionary genetics of personality,

EUROPEAN JOURNAL OF PERSONALITY, Issue 5 2007
Lars Penke
Abstract Genetic influences on personality differences are ubiquitous, but their nature is not well understood. A theoretical framework might help, and can be provided by evolutionary genetics. We assess three evolutionary genetic mechanisms that could explain genetic variance in personality differences: selective neutrality, mutation-selection balance, and balancing selection. Based on evolutionary genetic theory and empirical results from behaviour genetics and personality psychology, we conclude that selective neutrality is largely irrelevant, that mutation-selection balance seems best at explaining genetic variance in intelligence, and that balancing selection by environmental heterogeneity seems best at explaining genetic variance in personality traits. We propose a general model of heritable personality differences that conceptualises intelligence as fitness components and personality traits as individual reaction norms of genotypes across environments, with different fitness consequences in different environmental niches. We also discuss the place of mental health in the model. This evolutionary genetic framework highlights the role of gene-environment interactions in the study of personality, yields new insight into the person-situation-debate and the structure of personality, and has practical implications for both quantitative and molecular genetic studies of personality. Copyright © 2007 John Wiley & Sons, Ltd. [source]


THE REACTION NORM FOR ABDOMINAL PIGMENTATION AND ITS CURVE IN DROSOPHILA MEDIOPUNCTATA DEPEND ON THE MEAN PHENOTYPIC VALUE

EVOLUTION, Issue 1 2009
Felipe Rocha
The idea of a general independence between the phenotypic plasticity and the mean value of a trait is, presently, a consensus. Here, we use the reaction norm of abdominal pigmentation (number of dark spots) of Drosophila mediopunctata in response to temperature, to test this idea. We raised eight strains, bearing two different chromosomal inversions and with varying mean phenotypic values, under 11 temperatures in a thermal gradient to test for predictions concerning mean phenotypic values, chromosomal inversions, and reaction norms. Our results revealed a strong effect of different phenotypic groups and no effect of different karyotypes on reaction norms. Moreover, we found a significant negative correlation between mean phenotypic value and the curvature of the reaction norms, revealing a high dependency of the reaction norm shape on mean phenotypic value. These results clearly reject the idea of genetic independence between mean value and phenotypic plasticity, and may indicate a pattern of correlation, which may include results from other traits and species, with an importance that has not been fully appreciated. [source]


CROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATA

EVOLUTION, Issue 2 2006
Farrah Bashey
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort [source]


THE EVOLUTION OF ENVIRONMENTAL AND GENETIC SEX DETERMINATION IN FLUCTUATING ENVIRONMENTS

EVOLUTION, Issue 12 2003
Tom J. M. Van Dooren
Abstract Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination. [source]


FAMILY-LEVEL COVARIATION BETWEEN PARASITE RESISTANCE AND MATING SYSTEM IN A HERMAPHRODITIC FRESHWATER SNAIL

EVOLUTION, Issue 7 2002
Jürgen Wiehn
Abstract Genetic compatibility, nonspecific defenses, and environmental effects determine parasite resistance. Host mating system (selfing vs. outcrossing) should be important for parasite resistance because it determines the segregation of alleles at the resistance loci and because inbreeding depression may hamper immune defenses. Individuals of a mixed mating hermaphroditic freshwater snail, Lymnaea ovata, are commonly infected by a digenetic trematode parasite, Echinoparyphium recurvatum. We examined covariation between quantitative resistance to novel parasites and mating system by exposing snail families from four populations that differed by their inbreeding coefficients. We found that resistance was unrelated to inbreeding coefficient of the population, suggesting that the more inbred populations did not carry higher susceptibility load than the less inbred populations. Most of the variation in resistance was expressed among the families within the populations. In the population with the lowest inbreeding coefficient, resistance increased with outcrossing rate of the family, as predicted if selfing had led to inbreeding depression. In the other three populations with higher inbreeding coefficients, resistance was unrelated to outcrossing rate. The results suggest that in populations with higher inbreeding some of the genetic load has been purged, uncoupling the predicted relationship between outcrossing rate and resistance. Snail families also displayed crossing reaction norms for resistance when tested in two environments that presented low and high immune challenge, suggesting that genotype-by-environment interactions are important for parasite resistance. [source]


MEASURING PROBABILISTIC REACTION NORMS FOR AGE AND SIZE AT MATURATION

EVOLUTION, Issue 4 2002
Mikko Heino
Abstract We present a new probabilistic concept of reaction norms for age and size at maturation that is applicable when observations are carried out at discrete time intervals. This approach can also be used to estimate reaction norms for age and size at metamorphosis or at other ontogenetic transitions. Such estimations are critical for understanding phenotypic plasticity and life-history changes in variable environments, assessing genetic changes in the presence of phenotypic plasticity, and calibrating size- and age-structured population models. We show that previous approaches to this problem, based on regressing size against age at maturation, give results that are systematically biased when compared to the probabilistic reaction norms. The bias can be substantial and is likely to lead to qualitatively incorrect conclusions; it is caused by failing to account for the probabilistic nature of the maturation process. We explain why, instead, robust estimations of maturation reaction norms should be based on logistic regression or on other statistical models that treat the probability of maturing as a dependent variable. We demonstrate the utility of our approach with two examples. First, the analysis of data generated for a known reaction norm highlights some crucial limitations of previous approaches. Second, application to the northeast arctic cod (Gadus morhua) illustrates how our approach can be used to shed new light on existing real-world data. [source]


QUANTITATIVE GENETICS OF SEXUAL PLASTICITY: THE ENVIRONMENTAL THRESHOLD MODEL AND GENOTYPE-BY-ENVIRONMENT INTERACTION FOR PHALLUS DEVELOPMENT IN THE SNAIL BULINUS TRUNCATUS

EVOLUTION, Issue 5 2000
Marie-France Ostrowski
Abstract Sexual polymorphisms are model systems for analyzing the evolution of reproductive strategies. However, their plasticity and other binary traits have rarely been studied, with respect to environmental variables. A possible reason is that, although threshold models offer an adequate quantitative genetics framework for binary traits in a single environment, analyzing their plasticity requires more refined empirical and theoretical approaches. The statistical framework proposed here, based on the environmental threshold model (ETM), should partially fill this gap. This methodology is applied to an empirical dataset on a plastic sexual polymorphism, aphally, in the snail Bulinus truncatus. Aphally is characterized by the co-occurrence of regular hermaphrodites (euphallics) together with hermaphrodites deprived of the male copulatory organ (aphallics). Reaction norms were determined for 40 inbred lines, distributed at three temperatures, in a first experiment. A second experiment allowed us to rule out maternal effects. We confirmed the existence of high broad-sense heritabilities as well as a positive effect of high temperatures on aphally. However a significant genotype-by-environment interaction was detected for the first time, suggesting that sexual plasticity itself can respond to selection. A nested series of four ETM-like models was developed for estimating genetical effects on both mean aphally rate and plasticity. These models were tested using a maximum-likelihood procedure and fitted to aphally data. Although no perfect fit of models to data was observed, the refined versions of ETM models conveniently reduce the analysis of complex reaction norms of binary traits into standard quantitative genetics parameters, such as genetic values and environmental variances. [source]


Temperature-dependent plasticity of segment number in an arthropod species: the centipede Strigamia maritima

EVOLUTION AND DEVELOPMENT, Issue 4 2008
Vincent Vedel
SUMMARY The evolution of arthropod segment number provides us with a paradox, because, whereas there is more than 20-fold variation in this character overall, most classes and orders of arthropods are composed of species that lack any variation in the number of segments. So, what is the origin of the higher-level variation? The centipede order Geophilomorpha is unusual because, with the exception of one of its families, all species exhibit intraspecific variation in segment number. Hence it provides an opportunity to investigate how segment number may change in a microevolutionary context. Here, we show that segment number can be directly altered by an environmental factor (temperature),this is the first such demonstration for any arthropod. The direction of the effect is such that higher temperature during embryogenesis produces more segments. This potentially explains an intraspecific cline in the species concerned, Strigamia maritima, but it does not explain how such a cline is translated into the parallel interspecific pattern of lower-latitude species having more segments. Given the plastic nature of the intraspecific variation, its link with interspecific differences may lie in selection acting on developmental reaction norms. [source]


SYNTHESIS: Life history change in commercially exploited fish stocks: an analysis of trends across studies

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2009
Diana M. T. Sharpe
Abstract Age and size at maturation have declined dramatically in many commercial fish stocks over the past few decades , changes that have been widely attributed to fishing pressure. We performed an analysis of such trends across multiple studies, to test for the consistency of life history changes under fishing, and for their association with the intensity of exploitation (fishing mortality rate). We analyzed 143 time series from 37 commercial fish stocks, the majority of which originated from the North Atlantic. Rates of phenotypic change were calculated for two traditional maturation indices (length and age at 50% maturity), as well as for probabilistic maturation reaction norms (PMRNs). We found that all three indices declined in heavily exploited populations, and at a rate that was strongly correlated with the intensity of fishing (for length at 50% maturity and PMRNs). These results support previous assertions that fishing pressure is playing a major role in the life history changes observed in commercial fish stocks. Rates of change were as strong for PMRNs as for age and size at 50% maturity, which is consistent with the hypothesis that fishing-induced phenotypic changes can sometimes have a genetic basis. [source]


Taxon-specific reaction norms to predator cues in a hybrid Daphnia complex

FRESHWATER BIOLOGY, Issue 7 2007
JUSTYNA WOLINSKA
Summary 1. Previous studies have shown that interspecific hybridisation is common among taxa from the Daphnia galeata/hyalina/cucullata species complex. We investigated the influence of predator kairomones on the morphology and life histories of nine clones belonging to three taxa (pure D. galeata, F1 hybrids between D. galeata and D. hyalina, and backcrossed D. hyalina) of this species complex. Predators exerting positive (fish) and negative (Chaoborus larvae) size-selective predation were tested. 2. The most responsive traits were size at maturity and size of neonates. Despite large between-clone variation, discriminant analysis revealed that the three taxa were distinct from each other in key life-history traits. F1 hybrids did not react in an intermediate way compared to the other taxa: the multivariate distances between F1 hybrids and either taxon were larger than between pure D. galeata and backcrossed D. hyalina. 3. The average plasticity (calculated across all traits) was similar for all three taxa. With regard to the size at maturity and neonate body size, the strength of the response was a function of the intrinsic values of these traits expressed in the control. For example, for size at maturity, smaller individuals showed a significantly stronger reaction to Chaoborus kairomones than larger ones. 4. Finally, we monitored seasonal changes in body size, egg number and population density of pure D. galeata and F1 hybrids in Greifensee (Switzerland). The two taxa experienced similar seasonal changes in body size but, on some sampling dates, they differed in mean egg number. The observed seasonal changes in Daphnia body size were consistent with what would be expected if the predator assemblage shifted from fish to Chaoborus over the course of the summer. The fluctuations in the frequencies of Daphnia taxa, however, were not related to seasonal variation in Daphnia body size. 5. Experimental data suggest that temporally heterogeneous predation regimes might be an important condition stabilising the co-occurrence of Daphnia hybrids with parental taxa. Predation regimes, however, cannot solely explain dynamic changes in taxon frequency in Greifensee. [source]


Metabolic cold adaptation and developmental plasticity in metabolic rates among species in the Fundulus notatus species complex

FUNCTIONAL ECOLOGY, Issue 5 2010
Jacob Schaefer
Summary 1.,In ectotherms, temperature and body size are the most influential and well studied variables affecting metabolic rate. Understanding mechanisms driving the evolution of metabolic rates is crucial to broader ecological theory. The metabolic cold adaptation hypothesis (MCA) makes predictions about the evolution of ectotherm metabolic rates and temperature-metabolic rate reaction norms. 2.,We examined intra and interspecific patterns in metabolic rate among populations in the Fundulus notatus species group (F. notatus, F. olivaceus and F. euryzonus). We ask if patterns of intra and interspecific variability in metabolic rate are consistent with the MCA and if metabolic rates in general are developmentally plastic. 3.,Support for the MCA was mixed among intra and interspecific tests. The northern population of F. olivaceus had increased metabolic rate and no difference in temperature sensitivity (slope of temperature-metabolic rate reaction norm). Northern populations of F. notatus had lower temperature sensitivity and no difference in overall metabolic rate. The southern coastal drainage endemic (F. euryzonus) had intermediate metabolic rates compared to southern populations of the other two more broadly distributed species. Metabolic rates were also developmentally plastic. Adults reared at warmer temperatures had lower metabolic rates after accounting for body size and temperature. 4.,Differences in thermal regimes explain some variability in metabolic rates among populations consistent with MCA. However, interspecific comparisons are not consistent with MCA and are likely influenced by species differences in ecology and life history strategies. [source]


Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability

FUNCTIONAL ECOLOGY, Issue 5 2004
A. AYRINHAC
Summary 1According to their geographical distribution, most Drosophila species may be classified as either temperate or tropical, and this pattern is assumed to reflect differences in their thermal adaptation, especially in their cold tolerance. We investigated cold tolerance in a global collection of D. melanogaster by monitoring the time adults take to recover from chill coma after a treatment at 0 °C. 2Flies grown at an intermediate temperature (21 °C) showed a significant linear latitudinal cline: recovery was faster in populations living in colder climates. 3The role of growth temperature was analysed in a subset of tropical and temperate populations. In all cases, recovery time decreased when growth temperature was lowered, and linear reaction norms were observed. This adaptive phenotypic plasticity explained more than 80% of the total variation, while genetic latitudinal differences accounted for less than 4%. 4The beneficial effect observed in adults grown at a low temperature contrasts with other phenotypic effects which, like male sterility, appear as harmful and pathological. Our results point to the difficulty of finding a general interpretation to the diversity of plastic responses that are induced by growth temperature variations. [source]


Flexible responses of insects to changing environmental temperature , early season development of Craspedolepta species on fireweed

GLOBAL CHANGE BIOLOGY, Issue 7 2006
IAN D. HODKINSON
Abstract Developmental response to temperature during the critical early season growing period was investigated in two congeneric species of Craspedolepta feeding on Epilobium angustifolium at three sites at different altitudes in Norway and the UK. The larval development reaction norm to temperature, measured as accumulated day degrees, was not significantly different between Craspedolepta nebulosa and Craspedolepta subpunctata at sites where they co-occurred but C. nebulosa development was consistently more advanced at any site. For individual species the reaction norms at the lowest site (Ainsdale, UK) were similar to the intermediate site (Geilo, Norway): and there were no differences between years. Insect size remained relatively constant. However, at the highest site (Haugastøl, Norway), where C. subpunctata is unable to complete its development, the reaction norm for C. nebulosa was significantly higher than at Geilo and the individual insects produced were smaller. These adaptations allow life-history completion under limiting temperature conditions. An experiment at Ainsdale, to raise the mean temperature by around 2.5°C during the early growing season, resulted in accelerated development in both C. nebulosa and C. subpunctata but development in C. nebulosa was accelerated proportionately more. C. nebulosa thus displays the greater plasticity in developmental response to environmental temperature that allows it to occupy a greater altitudinal and latitudinal range than C. subpunctata, in which the response is less plastic and more canalized. The likely individualistic responses of the two species to climate warming are considered. [source]


Temperature-induced plasticity at cellular and organismal levels in the lizard Anolis carolinensis

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 3 2010
Rachel M. GOODMAN
Abstract Among ectotherms, individuals raised in cooler temperatures often have larger body size and/or larger cell size. The current study tested whether geographic variation in cell size and plasticity for cell size exist in a terrestrial, ectothermic vertebrate, Anolis carolinensis Voigt, 1832. We demonstrated temperature-induced plasticity in erythrocytes and epithelial cells of hatchlings lizards derived from the eggs of females sampled from four populations and incubated at multiple temperatures. Larger cells were produced in hatchlings from cooler treatments; however, hatchling body size was unaffected by temperature. Therefore, temperature-induced plasticity applies at the cellular, but not organismal, level in A. carolinensis. In addition, reaction norms for cell size differed among populations. There was a latitudinal trend in cell size and in plasticity of cell size among our study populations. The two southernmost populations showed plasticity in cell size, whereas the two northernmost ones did not. We suggest that selection pressure for larger cell size in northern, cooler environments has restricted plasticity in A. carolinensis applied at the cellular level in response to variable incubation environments. [source]


Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 8 2010
L. J. MICHIE
Abstract Individuals can adapt to heterogeneity in their environment through either local adaptation or phenotypic plasticity. Colour forms of the ladybird Harmonia axyridis are a classic example of local adaptation, in which the frequency of melanic forms varies greatly between populations. In some populations, there are also large seasonal changes in allele frequency, with melanism being costly in summer and beneficial in winter. We report that the non-melanic morph of H. axyridis dramatically increases its degree of melanization at cold temperatures. Furthermore, there is genetic variation in reaction norms, with different families responding to temperature in different ways. Variation at different spatial and temporal scales appears to have selected for either genetic or phenotypically plastic adaptations, which may be important in thermoregulation. As melanism is known to have a large effect on fitness in H. axyridis, this plasticity of melanization may have hastened its spread as an invasive species. [source]


Local adaptation at the range peripheries of Sitka spruce

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2010
M. MIMURA
Abstract High-dispersal rates in heterogeneous environments and historical rapid range expansion can hamper local adaptation; however, we often see clinal variation in high-dispersal tree species. To understand the mechanisms of the species' distribution, we investigated local adaptation and adaptive plasticity in a range-wide context in Sitka spruce, a wind-pollinated tree species that has recently expanded its range after glaciations. Phenotypic traits were observed using growth chamber experiments that mimicked temperature and photoperiodic regimes from the limits of the species realized niche. Bud phenology exhibited parallel reaction norms among populations; however, putatively adaptive plasticity and strong divergent selection were seen in bud burst and bud set timing respectively. Natural selection appears to have favoured genotypes that maximize growth rate during available frost-free periods in each environment. We conclude that Sitka spruce has developed local adaptation and adaptive plasticity throughout its range in response to current climatic conditions despite generally high pollen flow and recent range expansion. [source]