Home About us Contact | |||
Reaction Equations (reaction + equation)
Selected AbstractsStatistical sensitivity analysis of packed column reactors for contaminated wastewaterENVIRONMETRICS, Issue 8 2003A. Fassò Abstract In this article we consider the statistical sensitivity analysis of heavy metal biosorption in contaminated wastewater packed column reactors. In particular, the model describes the biosorption phenomenon using the Advection Dispersion Reaction equation under rapid local equilibrium. This allows computer simulation with random input parameters chosen from appropriate probability distributions. In order to have a statistical framework for analyzing the simulated data and assessing input importance, we introduce heteroskedastic and multivariate sensitivity analysis, which extends standard sensitivity analysis. Copyright © 2003 John Wiley & Sons, Ltd. [source] Mathematical modeling of reactive transport of anti-tumor drugs through electro-active membranesASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2009Parag Saurabh Abstract We present a mathematical modeling and design of an implantable polymer membrane-based drug-release device that uses alternate voltage scans across the electro-active membrane for delivery and reactive uptake of anionic anti-tumor drugs. Our mathematical model comprises Poisson,Boltzmann, Nernst,Planck and Diffusion,Reaction equations written for three compartments, namely, the drug reservoir, the polymer membrane and the diseased tissue, with the governing equations for the compartments being linked to each other through the boundary conditions. An analytical solution for the three-compartment model has been obtained using Laplace transforms and residue integration. We use this solution to quantify the various parameters controlling the spatiotemporal dynamics of drug delivery and analyze the efficacy of the reactive transport process for an anionic chemotherapeutic drug, Irinotecan-HCl, commercially also known as CPT-11. We show that a ,smart pill' with optimal drug efficacy may be designed by altering the thickness and the diffusivity of the electro-active membrane, and by tuning the applied voltage and the duration of the positive and the negative voltage scans such that the drug concentration in the tumor tissue is maintained within its therapeutic range. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] A variational multiscale model for the advection,diffusion,reaction equationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 7 2009Guillaume Houzeaux Abstract The variational multiscale (VMS) method sets a general framework for stabilization methods. By splitting the exact solution into coarse (grid) and fine (subgrid) scales, one can obtain a system of two equations for these unknowns. The grid scale equation is solved using the Galerkin method and contains an additional term involving the subgrid scale. At this stage, several options are usually considered to deal with the subgrid scale equation: this includes the choice of the space where the subgrid scale would be defined as well as the simplifications leading to compute the subgrid scale analytically or numerically. The present study proposes to develop a two-scale variational method for the advection,diffusion,reaction equation. On the one hand, a family of weak forms are obtained by integrating by parts a fraction of the advection term. On the other hand, the solution of the subgrid scale equation is found using the following. First, a two-scale variational method is applied to the one-dimensional problem. Then, a series of approximations are assumed to solve the subgrid space equation analytically. This allows to devise expressions for the ,stabilization parameter' ,, in the context of VMS (two-scale) method. The proposed method is equivalent to the traditional Green's method used in the literature to solve residual-free bubbles, although it offers another point of view, as the strong form of the subgrid scale equation is solved explicitly. In addition, the authors apply the methodology to high-order elements, namely quadratic and cubic elements. The proposed model consists in assuming that the subgrid scale vanishes also on interior nodes of the element and applying the strategy used for linear element in the segment between these interior nodes. The proposed scheme is compared with existing ones through the solution of a one-dimensional numerical example for linear, quadratic and cubic elements. In addition, the mesh convergence is checked for high-order elements through the solution of an exact solution in two dimensions. Copyright © 2008 John Wiley & Sons, Ltd. [source] ,,, Energy Separation in Homodesmotic ReactionsCHEMPHYSCHEM, Issue 12 2005Georg Hohlneicher Dr. Abstract A well-established quantity for specifying the aromaticity or antiaromaticity of cyclic conjugated molecules is the so-called aromatic stabilization energy (ASE), which can be derived,either experimentally or theoretically,from appropriate homodesmotic reactions. To gain further insight into the origin of aromaticity, several schemes have been devised to partition ASE into nuclear and electronic as well as , and , contributions, some of which have resulted in contradictory statements about the driving force of aromatic stabilization. Currently, these contradictions have not been resolved and have resulted in a confusing distinction between two different types of aromaticity: extrinsic and intrinsic aromaticity. By investigating different homodesmotic reactions we show that, in contrast to ASE itself, the individual contributions that enter the ASE can strongly depend on the type of reaction. Caution is therefore advised if conclusions or physical interpretations are derived from the individual components. The contradictions result from the fact that some reactions suffer from an imbalance in the number of interaction terms at the two sides of the reaction equation. The concept of isointeractional reactions is introduced and results in the elimination of the imbalance. For these reactions, the contradictions disappear and the distinction between intrinsic and extrinsic aromaticity becomes unnecessary. As far as the ,,, partitioning is concerned, several schemes proposed in the literature are compared. Contradictory results are obtained depending on the partitioning scheme and reaction used. In this context, it is demonstrated that for the partitioning of the electron,electron interaction, the scheme introduced by Jug and Köster is the one that is most theoretically grounded. [source] Numerical simulation of the miscible displacement of radionuclides in a heterogeneous porous mediumINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10 2005C.-H. Bruneau Abstract The aim of this paper is to model and simulate the displacement of radioactive elements in a saturated heterogeneous porous medium. New schemes are proposed to solve accurately the convection,diffusion,reaction equations including nonlinear terms in the time derivative. Numerical tests show the stability and robustness of these schemes through strong heterogeneities of the medium. Finally the COUPLEX 1 benchmark concerning the far field simulation of a polluted flow by a leak of a nuclear waste disposal is performed and compared with the results available in the literature. Copyright © 2005 John Wiley & Sons, Ltd. [source] Hydrogen as burner fuel: modelling of hydrogen,hydrocarbon composite fuel combustion and NOx formation in a small burnerINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2005Mustafa Ilbas Abstract The objective of this work is to investigate numerically the turbulent non-premixed hydrogen (H2) and hydrogen,hydrocarbon flames in a small burner. Numerical studies using Fluent code were carried out for air-staged and non-staged cases. The effects of fuel composition from pure hydrogen to natural gas (100%H2, 70%H2+30%CH4, 10%H2+90%CH4, and 100%CH4) were also investigated. The predictions are validated and compared against the experimental results previously obtained and results from the literature. Turbulent diffusion flames are investigated numerically using a finite volume method for the solution of the conservation equations and reaction equations governing the problem. Although, three different turbulence models were tested, the standard k,, model was used for the modelling of the turbulence phenomena in the burner. The temperature and major pollutant concentrations (CO and NOx) distributions are in good agreement with the existing experimental results. Air staging causes rich and lean combustion regions thus lower NOx emissions through the combustor exit. Blending hydrogen with methane causes considerable reduction in temperature levels and thus NO emissions. Increasing the mixture ratio from stoichiometric to leaner mixtures also decreases the temperature and thus NO emissions. Hydrogen may be considered a good alternative fuel for burners, as its use reduces the emission of pollutants, and as it is a renewable synthetic fuel. Copyright © 2005 John Wiley & Sons, Ltd. [source] Thermodynamic optimization of internal structure in a fuel cellINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2004Jose V. C. Vargas Abstract This paper shows that the internal structure (relative sizes, spacings) of a fuel cell can be optimized so that performance is maximized at the global level. The optimization of flow geometry begins at the smallest (elemental) level, where the fuel cell is modelled as a unidirectional flow system. The polarization curve, power and efficiency are obtained as functions of temperature, pressure, geometry and operating parameters. Although the model is illustrated for an alkaline fuel cell, it may be applied to other fuel cell types by changing the reaction equations and accounting for the appropriate energy interactions. The optimization of the internal structure is subjected to fixed total volume. There are four degrees of freedom in the optimization, which account for the relative thicknesses of the two (anode and cathode) diffusion layers, two reaction layers and the space occupied by the electrolyte solution. The available volume is distributed optimally through the system so that the total power is maximized. Numerical results show that the optima are sharp, and must be identified accurately. Temperature and pressure gradients play important roles, especially as the fuel and oxidant flow paths increase. The optimized internal structure is reported in dimensionless form. Directions for future improvements in flow architecture (constructal design) are discussed. Copyright © 2004 John Wiley & Sons, Ltd. [source] Numerical simulation of thermal,hydraulic characteristics in a proton exchange membrane fuel cellINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2003Y.M. Ferng Abstract The thermal,hydraulic characteristics of a proton exchange membrane fuel cell (PEMFC) are numerically simulated by a simplified two-phase, multi-component flow model. This model consists of continuity, momentum, energy and concentration equations, and appropriate equations to consider the varying flow properties of the gas,liquid two-phase region in a PEMFC. This gas,liquid two-phase characteristic is not considered in most of the previous simulation works. The calculated thermal,hydraulic phenomena of a PEMFC are reasonably presented in this paper, which include the distributions of flow vector, temperature, oxygen concentration, liquid water saturation, and current density, etc. Coupled with the electrochemical reaction equations, current flow model can predict the cell voltage vs current density curves (i.e. performance curves), which are validated by the single-cell tests. The predicted performance curves for a PEMFC agree well with the experimental data. In addition, the positive effect of temperature on the cell performance is also precisely captured by this model. The model presented herein is essentially developed from the thermal,hydraulic point of view and can be considered as a stepping-stone towards a full complete PEMFC simulation model that can help the optima design for the PEMFC and the enhancement of cell efficiency. Copyright © 2003 John Wiley & Sons, Ltd. [source] Kinetic Study of the Asymmetric Hydrogenation of Methyl Acetoacetate in the Presence of a Ruthenium Binaphthophosphepine ComplexADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2009Eva Öchsner Abstract The asymmetric hydrogenation of methyl acetoacetate (MAA) in methanol using dibromobis{(S)-4-phenyl-4,5-dihydro-3H -dinaphtho[2,1- c: 1,,2,- e]phosphepine}-ruthenium was studied in detail. For the determination of the reaction network, data from kinetic experiments were compared to different possible reaction networks using the kinetic software Presto Kinetics. The simulation was optimised to describe the reaction accurately with a minimal set of process parameters and reaction equations. For the best model the reaction orders, collision factors and activation energy of all reaction steps were determined. Additionally, the influence of reaction temperature and hydrogen pressure on the enantiomeric excess (ee) of the reaction was studied. It was found that high reaction temperatures and high hydrogen pressures result in increasing enantioselectivities. [source] Solving singularly perturbed advection,reaction equations via non-standard finite difference methodsMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 14 2007Jean M.-S. Abstract We design and implement two non-standard finite difference methods (NSFDMs) to solve singularly perturbed advection,reaction equations (SPARE). Our methods constitute a big plus to the class of those ,rare' fitted operator methods, which can be extended to singularly perturbed partial differential equations. Unlike the standard finite difference methods (SFDMs), the NSFDMs designed in this paper allow the time and the space step sizes to vary independently of one another and of the parameter , in the SPARE under consideration. The NSFDMs replicate the linear stability properties of the fixed points of the continuous problem. Furthermore, these methods preserve the positivity and boundedness properties of the exact solution. Numerical simulations that confirm the theoretical results are presented. Copyright © 2007 John Wiley & Sons, Ltd. [source] Single dopant diffusion in semiconductor technologyMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 2 2004A. Glitzky Abstract The paper deals with the analysis of pair diffusion models in semiconductor technology. The underlying model contains reaction-drift-diffusion equations for the mobile point defects and dopant-defect pairs as well as reaction equations for immobile dopants which are coupled with a non-linear Poisson equation for the chemical potential of the electrons. For homogeneous structures we present an existence and uniqueness result for strong solutions. Starting with energy estimates we derive further a priori estimates such that fixed point arguments due to Leray,Schauder guarantee the solvability of the model equations. Copyright © 2004 John Wiley & Sons, Ltd. [source] |